130,444 research outputs found

    ShakeMe: Key Generation From Shared Motion

    Full text link
    Devices equipped with accelerometer sensors such as today's mobile devices can make use of motion to exchange information. A typical example for shared motion is shaking of two devices which are held together in one hand. Deriving a shared secret (key) from shared motion, e.g. for device pairing, is an obvious application for this. Only the keys need to be exchanged between the peers and neither the motion data nor the features extracted from it. This makes the pairing fast and easy. For this, each device generates an information signal (key) independently of each other and, in order to pair, they should be identical. The key is essentially derived by quantizing certain well discriminative features extracted from the accelerometer data after an implicit synchronization. In this paper, we aim at finding a small set of effective features which enable a significantly simpler quantization procedure than the prior art. Our tentative results with authentic accelerometer data show that this is possible with a competent accuracy (7676%) and key strength (entropy approximately 1515 bits).Comment: The paper is accepted to the 13th IEEE International Conference on Pervasive Intelligence and Computing (PIComp-2015

    Heavy Residues with A<90 in the Asymmetric Reaction of 20 AMeV 124Sn+27Al as a Sensitive Probe of the Onset of Multifragmentation

    Full text link
    The cross sections and velocity distributions of heavy residues from the reaction of 20 AMeV 124Sn + 27Al have been measured at forward angles using the MARS recoil separator at Texas A&M in a wide mass range. A consistent overall description of the measured cross sections and velocity distributions was achieved using a model calculation employing the concept of deep-inelastic transfer for the primary stage of peripheral collisions, pre-equilibrium emission and incomplete fusion for the primary stage of more violent central collisions and the statistical model of multifragmentation (SMM code) for the deexcitation stage. An alternative calculation employing the sequential binary decay (GEMINI code) could not reproduce the observed yields of the residues from violent collisions (A<90) due to different kinematic properties. The success of SMM demonstrates that the heavy residues originate from events where a competition of thermally equilibrated fragment partitions takes place rather than a sequence of binary decays.Comment: 17 pages, 15 figures, LaTeX, to appear in NP

    Quantile Correlations: Uncovering temporal dependencies in financial time series

    Get PDF
    We conduct an empirical study using the quantile-based correlation function to uncover the temporal dependencies in financial time series. The study uses intraday data for the S\&P 500 stocks from the New York Stock Exchange. After establishing an empirical overview we compare the quantile-based correlation function to stochastic processes from the GARCH family and find striking differences. This motivates us to propose the quantile-based correlation function as a powerful tool to assess the agreements between stochastic processes and empirical data

    Automatic Structural Scene Digitalization

    Get PDF
    In this paper, we present an automatic system for the analysis and labeling of structural scenes, floor plan drawings in Computer-aided Design (CAD) format. The proposed system applies a fusion strategy to detect and recognize various components of CAD floor plans, such as walls, doors, windows and other ambiguous assets. Technically, a general rule-based filter parsing method is fist adopted to extract effective information from the original floor plan. Then, an image-processing based recovery method is employed to correct information extracted in the first step. Our proposed method is fully automatic and real-time. Such analysis system provides high accuracy and is also evaluated on a public website that, on average, archives more than ten thousands effective uses per day and reaches a relatively high satisfaction rate.Comment: paper submitted to PloS On

    Functional Bipartite Ranking: a Wavelet-Based Filtering Approach

    Full text link
    It is the main goal of this article to address the bipartite ranking issue from the perspective of functional data analysis (FDA). Given a training set of independent realizations of a (possibly sampled) second-order random function with a (locally) smooth autocorrelation structure and to which a binary label is randomly assigned, the objective is to learn a scoring function s with optimal ROC curve. Based on linear/nonlinear wavelet-based approximations, it is shown how to select compact finite dimensional representations of the input curves adaptively, in order to build accurate ranking rules, using recent advances in the ranking problem for multivariate data with binary feedback. Beyond theoretical considerations, the performance of the learning methods for functional bipartite ranking proposed in this paper are illustrated by numerical experiments
    • …
    corecore