42,071 research outputs found

    Introduction to Iltis: An Interactive, Web-Based System for Teaching Logic

    Full text link
    Logic is a foundation for many modern areas of computer science. In artificial intelligence, as a basis of database query languages, as well as in formal software and hardware verification --- modelling scenarios using logical formalisms and inferring new knowledge are important skills for going-to-be computer scientists. The Iltis project aims at providing a web-based, interactive system that supports teaching logical methods. In particular the system shall (a) support to learn to model knowledge and to infer new knowledge using propositional logic, modal logic and first-order logic, and (b) provide immediate feedback and support to students. This article presents a prototypical system that currently supports the above tasks for propositional logic. First impressions on its use in a second year logic course for computer science students are reported

    Adaptive Neuro-Fuzzy Inference System for Dynamic Load Balancing in 3GPP LTE

    Get PDF
    ANFIS is applicable in modeling of key parameters when investigating the performance and functionality of wireless networks. The need to save both capital and operational expenditure in the management of wireless networks cannot be over-emphasized. Automation of network operations is a veritable means of achieving the necessary reduction in CAPEX and OPEX. To this end, next generations networks such WiMAX and 3GPP LTE and LTE-Advanced provide support for self-optimization, self-configuration and self-healing to minimize human-to-system interaction and hence reap the attendant benefits of automation. One of the most important optimization tasks is load balancing as it affects network operation right from planning through the lifespan of the network. Several methods for load balancing have been proposed. While some of them have a very buoyant theoretical basis, they are not practically implementable at the current state of technology. Furthermore, most of the techniques proposed employ iterative algorithm, which in itself is not computationally efficient. This paper proposes the use of soft computing, precisely adaptive neuro-fuzzy inference system for dynamic QoS-aware load balancing in 3GPP LTE. Three key performance indicators (i.e. number of satisfied user, virtual load and fairness distribution index) are used to adjust hysteresis task of load balancing

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure
    • …
    corecore