3,737 research outputs found

    Spatial aggregation of local likelihood estimates with applications to classification

    Get PDF
    This paper presents a new method for spatially adaptive local (constant) likelihood estimation which applies to a broad class of nonparametric models, including the Gaussian, Poisson and binary response models. The main idea of the method is, given a sequence of local likelihood estimates (``weak'' estimates), to construct a new aggregated estimate whose pointwise risk is of order of the smallest risk among all ``weak'' estimates. We also propose a new approach toward selecting the parameters of the procedure by providing the prescribed behavior of the resulting estimate in the simple parametric situation. We establish a number of important theoretical results concerning the optimality of the aggregated estimate. In particular, our ``oracle'' result claims that its risk is, up to some logarithmic multiplier, equal to the smallest risk for the given family of estimates. The performance of the procedure is illustrated by application to the classification problem. A numerical study demonstrates its reasonable performance in simulated and real-life examples.Comment: Published in at http://dx.doi.org/10.1214/009053607000000271 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multiclass Learning with Simplex Coding

    Get PDF
    In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding strategy, namely the simplex coding, that allows to generalize to multiple classes a relaxation approach commonly used in binary classification. In this framework, a relaxation error analysis can be developed avoiding constraints on the considered hypotheses class. Moreover, we show that in this setting it is possible to derive the first provably consistent regularized method with training/tuning complexity which is independent to the number of classes. Tools from convex analysis are introduced that can be used beyond the scope of this paper

    Simultaneous adaptation to the margin and to complexity in classification

    Get PDF
    We consider the problem of adaptation to the margin and to complexity in binary classification. We suggest an exponential weighting aggregation scheme. We use this aggregation procedure to construct classifiers which adapt automatically to margin and complexity. Two main examples are worked out in which adaptivity is achieved in frameworks proposed by Steinwart and Scovel [Learning Theory. Lecture Notes in Comput. Sci. 3559 (2005) 279--294. Springer, Berlin; Ann. Statist. 35 (2007) 575--607] and Tsybakov [Ann. Statist. 32 (2004) 135--166]. Adaptive schemes, like ERM or penalized ERM, usually involve a minimization step. This is not the case for our procedure.Comment: Published in at http://dx.doi.org/10.1214/009053607000000055 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means

    Full text link
    Bayesian classification labels observations based on given prior information, namely class-a priori and class-conditional probabilities. Bayes' risk is the minimum expected classification cost that is achieved by the Bayes' test, the optimal decision rule. When no cost incurs for correct classification and unit cost is charged for misclassification, Bayes' test reduces to the maximum a posteriori decision rule, and Bayes risk simplifies to Bayes' error, the probability of error. Since calculating this probability of error is often intractable, several techniques have been devised to bound it with closed-form formula, introducing thereby measures of similarity and divergence between distributions like the Bhattacharyya coefficient and its associated Bhattacharyya distance. The Bhattacharyya upper bound can further be tightened using the Chernoff information that relies on the notion of best error exponent. In this paper, we first express Bayes' risk using the total variation distance on scaled distributions. We then elucidate and extend the Bhattacharyya and the Chernoff upper bound mechanisms using generalized weighted means. We provide as a byproduct novel notions of statistical divergences and affinity coefficients. We illustrate our technique by deriving new upper bounds for the univariate Cauchy and the multivariate tt-distributions, and show experimentally that those bounds are not too distant to the computationally intractable Bayes' error.Comment: 22 pages, include R code. To appear in Pattern Recognition Letter

    Bandwidth choice for nonparametric classification

    Get PDF
    It is shown that, for kernel-based classification with univariate distributions and two populations, optimal bandwidth choice has a dichotomous character. If the two densities cross at just one point, where their curvatures have the same signs, then minimum Bayes risk is achieved using bandwidths which are an order of magnitude larger than those which minimize pointwise estimation error. On the other hand, if the curvature signs are different, or if there are multiple crossing points, then bandwidths of conventional size are generally appropriate. The range of different modes of behavior is narrower in multivariate settings. There, the optimal size of bandwidth is generally the same as that which is appropriate for pointwise density estimation. These properties motivate empirical rules for bandwidth choice

    Fast learning rates for plug-in classifiers

    Full text link
    It has been recently shown that, under the margin (or low noise) assumption, there exist classifiers attaining fast rates of convergence of the excess Bayes risk, that is, rates faster than n−1/2n^{-1/2}. The work on this subject has suggested the following two conjectures: (i) the best achievable fast rate is of the order n−1n^{-1}, and (ii) the plug-in classifiers generally converge more slowly than the classifiers based on empirical risk minimization. We show that both conjectures are not correct. In particular, we construct plug-in classifiers that can achieve not only fast, but also super-fast rates, that is, rates faster than n−1n^{-1}. We establish minimax lower bounds showing that the obtained rates cannot be improved.Comment: Published at http://dx.doi.org/10.1214/009053606000001217 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bandwidth choice for nonparametric classification

    Full text link
    It is shown that, for kernel-based classification with univariate distributions and two populations, optimal bandwidth choice has a dichotomous character. If the two densities cross at just one point, where their curvatures have the same signs, then minimum Bayes risk is achieved using bandwidths which are an order of magnitude larger than those which minimize pointwise estimation error. On the other hand, if the curvature signs are different, or if there are multiple crossing points, then bandwidths of conventional size are generally appropriate. The range of different modes of behavior is narrower in multivariate settings. There, the optimal size of bandwidth is generally the same as that which is appropriate for pointwise density estimation. These properties motivate empirical rules for bandwidth choice.Comment: Published at http://dx.doi.org/10.1214/009053604000000959 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore