2,051 research outputs found

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    Network lifetime extension, power conservation and interference suppression for next generation mobile wireless networks

    Get PDF
    Two major focus research areas related to the design of the next generation multihop wireless networks are network lifetime extension and interference suppression. In this dissertation, these two issues are addressed. In the area of interference suppression, a new family of projection multiuser detectors, based on a generalized, two-stage design is proposed. Projection multiuser detectors provide efficient protection against undesired interference of unknown power, while preserving simple design, with closed-form solution for error probabilities. It is shown that these detectors are linearly optimal, if the interference power is unknown. In the area of network lifetime extension, a new approach to minimum energy routing for multihop wireless networks in Rayleigh fading channels is proposed. It is based on the concept of power combining, whereby two users transmit same signal to the destination user, emulating transmit diversity with two transmit antennas. Analytical framework for the evaluation of the benefits of power combining, in terms of the total transmit power reduction, is defined. Simulation results, which match closely the analytical results, indicate that significant improvements, in terms of transmit power reduction and network lifetime extension, are achievable. The messaging load, generated by the new scheme, is moderate, and can be further optimized

    Performance evaluation of non-prefiltering vs. time reversal prefiltering in distributed and uncoordinated IR-UWB ad-hoc networks

    Get PDF
    Time Reversal (TR) is a prefiltering scheme mostly analyzed in the context of centralized and synchronous IR-UWB networks, in order to leverage the trade-off between communication performance and device complexity, in particular in presence of multiuser interference. Several strong assumptions have been typically adopted in the analysis of TR, such as the absence of Inter-Symbol / Inter-Frame Interference (ISI/IFI) and multipath dispersion due to complex signal propagation. This work has the main goal of comparing the performance of TR-based systems with traditional non-prefiltered schemes, in the novel context of a distributed and uncoordinated IR-UWB network, under more realistic assumptions including the presence of ISI/IFI and multipath dispersion. Results show that, lack of power control and imperfect channel knowledge affect the performance of both non-prefiltered and TR systems; in these conditions, TR prefiltering still guarantees a performance improvement in sparse/low-loaded and overloaded network scenarios, while the opposite is true for less extreme scenarios, calling for the developement of an adaptive scheme that enables/disables TR prefiltering depending on network conditions
    • …
    corecore