13,185 research outputs found

    A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects

    Get PDF
    Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm^2

    Optical memory disks in optical information processing

    Get PDF
    We describe the use of optical memory disks as elements in optical information processing architectures. The optical disk is an optical memory devicew ith a storage capacity approaching 1010b its which is naturally suited to parallel access. We discuss optical disk characteristics which are important in optical computing systems such as contrast, diffraction efficiency, and phase uniformity. We describe techniques for holographic storage on optical disks and present reconstructions of several types of computer-generated holograms. Various optical information processing architectures are described for applications such as database retrieval, neural network implementation, and image correlation. Selected systems are experimentally demonstrated

    Combined Time and Information Redundancy for SEU-Tolerance in Energy-Efficient Real-Time Systems

    No full text
    Recently the trade-off between energy consumption and fault-tolerance in real-time systems has been highlighted. These works have focused on dynamic voltage scaling (DVS) to reduce dynamic energy dissipation and on time redundancy to achieve transient-fault tolerance. While the time redundancy technique exploits the available slack time to increase the fault-tolerance by performing recovery executions, DVS exploits slack time to save energy. Therefore we believe there is a resource conflict between the time-redundancy technique and DVS. The first aim of this paper is to propose the usage of information redundancy to solve this problem. We demonstrate through analytical and experimental studies that it is possible to achieve both higher transient fault-tolerance (tolerance to single event upsets (SEU)) and less energy using a combination of information and time redundancy when compared with using time redundancy alone. The second aim of this paper is to analyze the interplay of transient-fault tolerance (SEU-tolerance) and adaptive body biasing (ABB) used to reduce static leakage energy, which has not been addressed in previous studies. We show that the same technique (i.e. the combination of time and information redundancy) is applicable to ABB-enabled systems and provides more advantages than time redundancy alone

    Searching the Higgs with the Neurochip TOTEM

    Get PDF
    We show that neural network classifiers can be helpful in discriminating Higgs production events from the huge background at LHC, assuming the case of a mass value MH200M_H \sim 200 GeV. We use the high performance neurochip TOTEM, trained by the Reactive Tabu Search algorithm (RTS), which could be used for on-line purposes. Two different sets of input variables are compared.Comment: 4 pages,1 figure, requres espcrc2.sty and epsfig.sty. Work prsented in The 5th Topical Seminar on ``The irresistible rise of the Standard Model'', San Miniato, Tuscany, Italy, April 21-25 199
    corecore