1,037 research outputs found

    Minimum Degrees of Minimal Ramsey Graphs for Almost-Cliques

    Full text link
    For graphs FF and HH, we say FF is Ramsey for HH if every 22-coloring of the edges of FF contains a monochromatic copy of HH. The graph FF is Ramsey HH-minimal if FF is Ramsey for HH and there is no proper subgraph FF' of FF so that FF' is Ramsey for HH. Burr, Erdos, and Lovasz defined s(H)s(H) to be the minimum degree of FF over all Ramsey HH-minimal graphs FF. Define Ht,dH_{t,d} to be a graph on t+1t+1 vertices consisting of a complete graph on tt vertices and one additional vertex of degree dd. We show that s(Ht,d)=d2s(H_{t,d})=d^2 for all values 1<dt1<d\le t; it was previously known that s(Ht,1)=t1s(H_{t,1})=t-1, so it is surprising that s(Ht,2)=4s(H_{t,2})=4 is much smaller. We also make some further progress on some sparser graphs. Fox and Lin observed that s(H)2δ(H)1s(H)\ge 2\delta(H)-1 for all graphs HH, where δ(H)\delta(H) is the minimum degree of HH; Szabo, Zumstein, and Zurcher investigated which graphs have this property and conjectured that all bipartite graphs HH without isolated vertices satisfy s(H)=2δ(H)1s(H)=2\delta(H)-1. Fox, Grinshpun, Liebenau, Person, and Szabo further conjectured that all triangle-free graphs without isolated vertices satisfy this property. We show that dd-regular 33-connected triangle-free graphs HH, with one extra technical constraint, satisfy s(H)=2δ(H)1s(H) = 2\delta(H)-1; the extra constraint is that HH has a vertex vv so that if one removes vv and its neighborhood from HH, the remainder is connected.Comment: 10 pages; 3 figure

    On globally sparse Ramsey graphs

    Full text link
    We say that a graph GG has the Ramsey property w.r.t.\ some graph FF and some integer r2r\geq 2, or GG is (F,r)(F,r)-Ramsey for short, if any rr-coloring of the edges of GG contains a monochromatic copy of FF. R{\"o}dl and Ruci{\'n}ski asked how globally sparse (F,r)(F,r)-Ramsey graphs GG can possibly be, where the density of GG is measured by the subgraph HGH\subseteq G with the highest average degree. So far, this so-called Ramsey density is known only for cliques and some trivial graphs FF. In this work we determine the Ramsey density up to some small error terms for several cases when FF is a complete bipartite graph, a cycle or a path, and r2r\geq 2 colors are available

    Degrees in oriented hypergraphs and sparse Ramsey theory

    Full text link
    Let GG be an rr-uniform hypergraph. When is it possible to orient the edges of GG in such a way that every pp-set of vertices has some pp-degree equal to 00? (The pp-degrees generalise for sets of vertices what in-degree and out-degree are for single vertices in directed graphs.) Caro and Hansberg asked if the obvious Hall-type necessary condition is also sufficient. Our main aim is to show that this is true for rr large (for given pp), but false in general. Our counterexample is based on a new technique in sparse Ramsey theory that may be of independent interest.Comment: 20 pages, 3 figure

    Density theorems for bipartite graphs and related Ramsey-type results

    Full text link
    In this paper, we present several density-type theorems which show how to find a copy of a sparse bipartite graph in a graph of positive density. Our results imply several new bounds for classical problems in graph Ramsey theory and improve and generalize earlier results of various researchers. The proofs combine probabilistic arguments with some combinatorial ideas. In addition, these techniques can be used to study properties of graphs with a forbidden induced subgraph, edge intersection patterns in topological graphs, and to obtain several other Ramsey-type statements
    corecore