36,547 research outputs found

    On the Structure of Equilibria in Basic Network Formation

    Full text link
    We study network connection games where the nodes of a network perform edge swaps in order to improve their communication costs. For the model proposed by Alon et al. (2010), in which the selfish cost of a node is the sum of all shortest path distances to the other nodes, we use the probabilistic method to provide a new, structural characterization of equilibrium graphs. We show how to use this characterization in order to prove upper bounds on the diameter of equilibrium graphs in terms of the size of the largest kk-vicinity (defined as the the set of vertices within distance kk from a vertex), for any k≥1k \geq 1 and in terms of the number of edges, thus settling positively a conjecture of Alon et al. in the cases of graphs of large kk-vicinity size (including graphs of large maximum degree) and of graphs which are dense enough. Next, we present a new swap-based network creation game, in which selfish costs depend on the immediate neighborhood of each node; in particular, the profit of a node is defined as the sum of the degrees of its neighbors. We prove that, in contrast to the previous model, this network creation game admits an exact potential, and also that any equilibrium graph contains an induced star. The existence of the potential function is exploited in order to show that an equilibrium can be reached in expected polynomial time even in the case where nodes can only acquire limited knowledge concerning non-neighboring nodes.Comment: 11 pages, 4 figure

    Self-Organizing Flows in Social Networks

    Get PDF
    Social networks offer users new means of accessing information, essentially relying on "social filtering", i.e. propagation and filtering of information by social contacts. The sheer amount of data flowing in these networks, combined with the limited budget of attention of each user, makes it difficult to ensure that social filtering brings relevant content to the interested users. Our motivation in this paper is to measure to what extent self-organization of the social network results in efficient social filtering. To this end we introduce flow games, a simple abstraction that models network formation under selfish user dynamics, featuring user-specific interests and budget of attention. In the context of homogeneous user interests, we show that selfish dynamics converge to a stable network structure (namely a pure Nash equilibrium) with close-to-optimal information dissemination. We show in contrast, for the more realistic case of heterogeneous interests, that convergence, if it occurs, may lead to information dissemination that can be arbitrarily inefficient, as captured by an unbounded "price of anarchy". Nevertheless the situation differs when users' interests exhibit a particular structure, captured by a metric space with low doubling dimension. In that case, natural autonomous dynamics converge to a stable configuration. Moreover, users obtain all the information of interest to them in the corresponding dissemination, provided their budget of attention is logarithmic in the size of their interest set

    Selfish Network Creation with Non-Uniform Edge Cost

    Full text link
    Network creation games investigate complex networks from a game-theoretic point of view. Based on the original model by Fabrikant et al. [PODC'03] many variants have been introduced. However, almost all versions have the drawback that edges are treated uniformly, i.e. every edge has the same cost and that this common parameter heavily influences the outcomes and the analysis of these games. We propose and analyze simple and natural parameter-free network creation games with non-uniform edge cost. Our models are inspired by social networks where the cost of forming a link is proportional to the popularity of the targeted node. Besides results on the complexity of computing a best response and on various properties of the sequential versions, we show that the most general version of our model has constant Price of Anarchy. To the best of our knowledge, this is the first proof of a constant Price of Anarchy for any network creation game.Comment: To appear at SAGT'1

    Multilevel Network Games

    Full text link
    We consider a multilevel network game, where nodes can improve their communication costs by connecting to a high-speed network. The nn nodes are connected by a static network and each node can decide individually to become a gateway to the high-speed network. The goal of a node vv is to minimize its private costs, i.e., the sum (SUM-game) or maximum (MAX-game) of communication distances from vv to all other nodes plus a fixed price α>0\alpha > 0 if it decides to be a gateway. Between gateways the communication distance is 00, and gateways also improve other nodes' distances by behaving as shortcuts. For the SUM-game, we show that for α≤n−1\alpha \leq n-1, the price of anarchy is Θ(n/α)\Theta(n/\sqrt{\alpha}) and in this range equilibria always exist. In range α∈(n−1,n(n−1))\alpha \in (n-1,n(n-1)) the price of anarchy is Θ(α)\Theta(\sqrt{\alpha}), and for α≥n(n−1)\alpha \geq n(n-1) it is constant. For the MAX-game, we show that the price of anarchy is either Θ(1+n/α)\Theta(1 + n/\sqrt{\alpha}), for α≥1\alpha\geq 1, or else 11. Given a graph with girth of at least 4α4\alpha, equilibria always exist. Concerning the dynamics, both the SUM-game and the MAX-game are not potential games. For the SUM-game, we even show that it is not weakly acyclic.Comment: An extended abstract of this paper has been accepted for publication in the proceedings of the 10th International Conference on Web and Internet Economics (WINE

    The Price of Anarchy in Cooperative Network Creation Games

    Get PDF
    In general, the games are played on a host graph, where each node is a selfish independent agent (player) and each edge has a fixed link creation cost \alpha. Together the agents create a network (a subgraph of the host graph) while selfishly minimizing the link creation costs plus the sum of the distances to all other players (usage cost). In this paper, we pursue two important facets of the network creation game. First, we study extensively a natural version of the game, called the cooperative model, where nodes can collaborate and share the cost of creating any edge in the host graph. We prove the first nontrivial bounds in this model, establishing that the price of anarchy is polylogarithmic in n for all values of α in complete host graphs. This bound is the first result of this type for any version of the network creation game; most previous general upper bounds are polynomial in n. Interestingly, we also show that equilibrium graphs have polylogarithmic diameter for the most natural range of \alpha (at most n polylg n). Second, we study the impact of the natural assumption that the host graph is a general graph, not necessarily complete. This model is a simple example of nonuniform creation costs among the edges (effectively allowing weights of \alpha and \infty). We prove the first assemblage of upper and lower bounds for this context, stablishing nontrivial tight bounds for many ranges of \alpha, for both the unilateral and cooperative versions of network creation. In particular, we establish polynomial lower bounds for both versions and many ranges of \alpha, even for this simple nonuniform cost model, which sharply contrasts the conjectured constant bounds for these games in complete (uniform) graphs

    Endogenous Social Preferences, Heterogeneity and Cooperation

    Get PDF
    We set up an analytical framework focusing on the problem of interaction over time when economic agents are characterized by various types of distributional social preferences. We develop an evolutionary approach in which individual preferences are endogenous and account for the evolution of cooperation when all the players are initially entirely selfish. In particular, within motivationally heterogeneous agents embedded in a social network, we adopt a variant of the indirect evolutionary approach, where material payoffs play a critical role, and assume that a coevolutionary process occurs in which subjective preferences gradually evolve due to a key mechanism involving behavioral choices, relational intensity and degree of social openness. The simulations we carried out led to strongly consistent results with regard to the evolution of player types, the dynamics of material payoffs, the creation of significant interpersonal relationships among agents and the frequency of cooperation. In the long run, cooperation turns out to be the strategic choice that obtains the best performances, in terms of material payoffs, and "nice guys", far from finishing last, succeed in coming out ahead.Behavioral Economics; Cooperation; Prisoner's Dilemma; Social Evolution; Heterogeneous Social Preferences; Indirect Evolutionary Approach
    • …
    corecore