3,071 research outputs found

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    A note on Probably Certifiably Correct algorithms

    Get PDF
    Many optimization problems of interest are known to be intractable, and while there are often heuristics that are known to work on typical instances, it is usually not easy to determine a posteriori whether the optimal solution was found. In this short note, we discuss algorithms that not only solve the problem on typical instances, but also provide a posteriori certificates of optimality, probably certifiably correct (PCC) algorithms. As an illustrative example, we present a fast PCC algorithm for minimum bisection under the stochastic block model and briefly discuss other examples

    Computation with Polynomial Equations and Inequalities arising in Combinatorial Optimization

    Full text link
    The purpose of this note is to survey a methodology to solve systems of polynomial equations and inequalities. The techniques we discuss use the algebra of multivariate polynomials with coefficients over a field to create large-scale linear algebra or semidefinite programming relaxations of many kinds of feasibility or optimization questions. We are particularly interested in problems arising in combinatorial optimization.Comment: 28 pages, survey pape

    Polynomial Optimization with Real Varieties

    Full text link
    We consider the optimization problem of minimizing a polynomial f(x) subject to polynomial constraints h(x)=0, g(x)>=0. Lasserre's hierarchy is a sequence of sum of squares relaxations for finding the global minimum. Let K be the feasible set. We prove the following results: i) If the real variety V_R(h) is finite, then Lasserre's hierarchy has finite convergence, no matter the complex variety V_C(h) is finite or not. This solves an open question in Laurent's survey. ii) If K and V_R(h) have the same vanishing ideal, then the finite convergence of Lasserre's hierarchy is independent of the choice of defining polynomials for the real variety V_R(h). iii) When K is finite, a refined version of Lasserre's hierarchy (using the preordering of g) has finite convergence.Comment: 12 page

    Non-geometric flux vacua, S-duality and algebraic geometry

    Get PDF
    The four dimensional gauged supergravities descending from non-geometric string compactifications involve a wide class of flux objects which are needed to make the theory invariant under duality transformations at the effective level. Additionally, complex algebraic conditions involving these fluxes arise from Bianchi identities and tadpole cancellations in the effective theory. In this work we study a simple T and S-duality invariant gauged supergravity, that of a type IIB string compactified on a T6/(Z2xZ2)T^6/(Z_2 x Z_2) orientifold with O3/O7-planes. We build upon the results of recent works and develop a systematic method for solving all the flux constraints based on the algebra structure underlying the fluxes. Starting with the T-duality invariant supergravity, we find that the fluxes needed to restore S-duality can be simply implemented as linear deformations of the gauge subalgebra by an element of its second cohomology class. Algebraic geometry techniques are extensively used to solve these constraints and supersymmetric vacua, centering our attention on Minkowski solutions, become systematically computable and are also provided to clarify the methods.Comment: 47 pages, 10 tables, typos corrected, Accepted for Publication in Journal of High Energy Physic

    Incorporating statistical model error into the calculation of acceptability prices of contingent claims

    Get PDF
    The determination of acceptability prices of contingent claims requires the choice of a stochastic model for the underlying asset price dynamics. Given this model, optimal bid and ask prices can be found by stochastic optimization. However, the model for the underlying asset price process is typically based on data and found by a statistical estimation procedure. We define a confidence set of possible estimated models by a nonparametric neighborhood of a baseline model. This neighborhood serves as ambiguity set for a multi-stage stochastic optimization problem under model uncertainty. We obtain distributionally robust solutions of the acceptability pricing problem and derive the dual problem formulation. Moreover, we prove a general large deviations result for the nested distance, which allows to relate the bid and ask prices under model ambiguity to the quality of the observed data.Comment: 27 pages, 2 figure

    Uncertainty relations: An operational approach to the error-disturbance tradeoff

    Full text link
    The notions of error and disturbance appearing in quantum uncertainty relations are often quantified by the discrepancy of a physical quantity from its ideal value. However, these real and ideal values are not the outcomes of simultaneous measurements, and comparing the values of unmeasured observables is not necessarily meaningful according to quantum theory. To overcome these conceptual difficulties, we take a different approach and define error and disturbance in an operational manner. In particular, we formulate both in terms of the probability that one can successfully distinguish the actual measurement device from the relevant hypothetical ideal by any experimental test whatsoever. This definition itself does not rely on the formalism of quantum theory, avoiding many of the conceptual difficulties of usual definitions. We then derive new Heisenberg-type uncertainty relations for both joint measurability and the error-disturbance tradeoff for arbitrary observables of finite-dimensional systems, as well as for the case of position and momentum. Our relations may be directly applied in information processing settings, for example to infer that devices which can faithfully transmit information regarding one observable do not leak any information about conjugate observables to the environment. We also show that Englert's wave-particle duality relation [PRL 77, 2154 (1996)] can be viewed as an error-disturbance uncertainty relation.Comment: v3: title change, accepted in Quantum; v2: 29 pages, 7 figures; improved definition of measurement error. v1: 26.1 pages, 6 figures; supersedes arXiv:1402.671
    • …
    corecore