129 research outputs found

    Sharp Bounds on (Generalized) Distance Energy of Graphs

    Get PDF
    Given a simple connected graph G, let D(G) be the distance matrix, DL(G) be the distance Laplacian matrix, DQ(G) be the distance signless Laplacian matrix, and Tr(G) be the vertex transmission diagonal matrix of G. We introduce the generalized distance matrix Dα(G)=αTr(G)+(1−α)D(G) , where α∈[0,1] . Noting that D0(G)=D(G),2D12(G)=DQ(G),D1(G)=Tr(G) and Dα(G)−Dβ(G)=(α−β)DL(G) , we reveal that a generalized distance matrix ideally bridges the spectral theories of the three constituent matrices. In this paper, we obtain some sharp upper and lower bounds for the generalized distance energy of a graph G involving different graph invariants. As an application of our results, we will be able to improve some of the recently given bounds in the literature for distance energy and distance signless Laplacian energy of graphs. The extremal graphs of the corresponding bounds are also characterized

    On the Generalized Distance Energy of Graphs

    Get PDF
    The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 - α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n

    Bounds for the Generalized Distance Eigenvalues of a Graph

    Get PDF
    Let G be a simple undirected graph containing n vertices. Assume G is connected. Let D(G) be the distance matrix, DL(G) be the distance Laplacian, DQ(G) be the distance signless Laplacian, and Tr(G) be the diagonal matrix of the vertex transmissions, respectively. Furthermore, we denote by Dα(G) the generalized distance matrix, i.e., Dα(G)=αTr(G)+(1−α)D(G) , where α∈[0,1] . In this paper, we establish some new sharp bounds for the generalized distance spectral radius of G, making use of some graph parameters like the order n, the diameter, the minimum degree, the second minimum degree, the transmission degree, the second transmission degree and the parameter α , improving some bounds recently given in the literature. We also characterize the extremal graphs attaining these bounds. As an special cases of our results, we will be able to cover some of the bounds recently given in the literature for the case of distance matrix and distance signless Laplacian matrix. We also obtain new bounds for the k-th generalized distance eigenvalue

    Merging the Spectral Theories of Distance Estrada and Distance Signless Laplacian Estrada Indices of Graphs

    Get PDF
    Suppose that G is a simple undirected connected graph. Denote by D(G) the distance matrix of G and by Tr(G) the diagonal matrix of the vertex transmissions in G, and let α∈[0,1] . The generalized distance matrix Dα(G) is defined as Dα(G)=αTr(G)+(1−α)D(G) , where 0≤α≤1 . If ∂1≥∂2≥…≥∂n are the eigenvalues of Dα(G) ; we define the generalized distance Estrada index of the graph G as DαE(G)=∑ni=1e(∂i−2αW(G)n), where W(G) denotes for the Wiener index of G. It is clear from the definition that D0E(G)=DEE(G) and 2D12E(G)=DQEE(G) , where DEE(G) denotes the distance Estrada index of G and DQEE(G) denotes the distance signless Laplacian Estrada index of G. This shows that the concept of generalized distance Estrada index of a graph G merges the theories of distance Estrada index and the distance signless Laplacian Estrada index. In this paper, we obtain some lower and upper bounds for the generalized distance Estrada index, in terms of various graph parameters associated with the structure of the graph G, and characterize the extremal graphs attaining these bounds. We also highlight relationship between the generalized distance Estrada index and the other graph-spectrum-based invariants, including generalized distance energy. Moreover, we have worked out some expressions for DαE(G) of some special classes of graphs
    • …
    corecore