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Abstract: Given a simple connected graph G, let D(G) be the distance matrix, DL(G) be the
distance Laplacian matrix, DQ(G) be the distance signless Laplacian matrix, and Tr(G) be the vertex
transmission diagonal matrix of G. We introduce the generalized distance matrix Dα(G) = αTr(G) +

(1− α)D(G), where α ∈ [0, 1]. Noting that D0(G) = D(G), 2D 1
2
(G) = DQ(G), D1(G) = Tr(G)

and Dα(G)− Dβ(G) = (α− β)DL(G), we reveal that a generalized distance matrix ideally bridges
the spectral theories of the three constituent matrices. In this paper, we obtain some sharp upper and
lower bounds for the generalized distance energy of a graph G involving different graph invariants.
As an application of our results, we will be able to improve some of the recently given bounds in the
literature for distance energy and distance signless Laplacian energy of graphs. The extremal graphs
of the corresponding bounds are also characterized.

Keywords: distance energy; distance (signless) Laplacian energy; generalized distance energy;
transmission regular graph.

2010 Mathematics Subject Classification: Primary: 05C50; 05C12; Secondary: 15A18.

1. Introduction

We study in this paper simple connected graphs G = (V, E) with V(G) = {v1, v2, . . . , vn} being
the vertex set and E(G) being the edge set. The order of G is denoted by |V(G)| = n and the size of G
is denoted by |E(G)| = m. Let N(v) be the neighborhood of a vertex v in V(G). Let G represent the
complement of G. Some classical graphs such as the complete graph, complete bipartite graph, path, and
cycle are denoted by Kn, Ks,t, Pn, and Cn, respectively. The degree of v is denoted by dG(v) or simply dv.
The adjacency matrix is A(G) = (aij) with Deg(G) = diag(d1, d2, . . . , dn) being the diagonal degree
matrix with di = dG(vi), i = 1, 2, . . . , n. The Laplacian and signless Laplacian matrices are signified
by L(G) = Deg(G)− A(G) and Q(G) = Deg(G) + A(G), respectively. Their spectra are arranged as
0 = µn ≤ µn−1 ≤ · · · ≤ µ1 and 0 ≤ qn ≤ qn−1 ≤ · · · ≤ q1, respectively.

Let duv be the graph distance between two vertices u and v. The distance matrix of G is given by
D(G) = (duv)u,v∈V(G). The transmission of a vertex v is TrG(v) = ∑

u∈V(G)
duv. If TrG(v) = k, for each

v ∈ V(G), then G is called k-transmission regular. The Wiener index or transmission is defined as
W(G) = 1

2 ∑
v∈V(G)

TrG(v). The transmission TrG(vi) or simply Tri forms a sequence {Tr1, Tr2, . . . , Trn},

which is usually referred to as the transmission degree sequence of G. The quantity Ti =
n

∑
j=1

dijTrj

means the second transmission degree of vi.
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Let Tr(G) = diag(Tr1, Tr2, . . . , Trn) be the diagonal matrix containing vertex transmission.
Aouchiche and Hansen [1–3] studied the two matrices DL(G) = Tr(G) − D(G) and DQ(G) =

Tr(G) + D(G), which are referred to as the distance Laplacian matrix and distance signless Laplacian
matrix, respectively. Thus far, the spectral properties of D(G), DL(G) and DQ(G) of connected
undirected graph G have been investigated extensively. For some recent works in this subject, see [1–15]
as well as the references therein.

Recently, Cui et al. [16] considered some convex combinations of the distance matrix and the
diagonal matrix with vertex transmissions of undirected graphs, which can underpin a unified
theory of distance spectral theories. The generalized distance matrix Dα(G) is a convex combinations
of Tr(G) and D(G), and defined as Dα(G) = αTr(G) + (1 − α)D(G), for 0 ≤ α ≤ 1. Since
D0(G) = D(G), 2D 1

2
(G) = DQ(G), D1(G) = Tr(G) and Dα(G) − Dβ(G) = (α − β)DL(G),

the generalized distance matrix spectral theory ideally encompasses those for distance matrix and
distance (signless) Laplacian matrices. The eigenvalues of Dα(G) can be ordered as ∂1 ≥ ∂2 ≥ · · · ≥ ∂n.
We will denote by spec(G) the generalized distance spectrum of the graph G. For some recent works
on the generalized distance spectrum, we direct readers to consult the papers [8,16–20].

The energy of a graph [21] as a mathematical chemistry concept was put forward by Ivan Gutman.
In chemistry, the energy is used to approximate the total Π-electron energy of a molecule. Let
λ1, λ2, . . . , λn be the adjacency eigenvalues of a graph G. The energy of a graph G, denoted by E(G),

is defined as E(G) =
n

∑
i=1
|λi| (see [22] for an updated survey). Recently, other kinds of energies of

a graph have been defined and studied. We recall some of them. Let ρD
1 ≥ ρD

2 ≥ · · · ≥ ρD
n and

ρL
1 ≥ ρL

2 ≥ · · · ≥ ρL
n and also ρQ

1 ≥ ρQ
2 ≥ · · · ≥ ρQ

n represent the distance, distance Laplacian, and
distance signless Laplacian eigenvalues, respectively. The distance energy of a graph G was introduced
in [23] as

ED(G) =
n

∑
i=1
|ρD

i |.

We have

n

∑
i=1

ρD
i = 0 and

n

∑
i=1

(ρD
i )

2 = 2 ∑
1≤i<j≤n

(dij)
2. (1)

For some recent results on the distance energy of a graph, we refer to [10] and the references therein.
In addition, the concept of distance Laplacian and distance signless Laplacian energies were

introduced in [7,10,24], respectively, as follows. The distance Laplacian energy of a graph G is defined
by taking into consideration of distance Laplacian spectrum deviations as

EL(G) =
n

∑
i=1

∣∣∣∣ρL
i −

2W(G)

n

∣∣∣∣ .

Similarly, the distance signless Laplacian energy of a graph G is defined as follows:

EQ(G) =
n

∑
i=1

∣∣∣∣ρQ
i −

2W(G)

n

∣∣∣∣ .

For some recent papers on EL(G) and EQ(G), we refer to [7,10,25], and for other recent papers
regarding the energy of a matrix with respect to different graph matrices; see [11,12,23,26–29] and the
references therein.
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Motivated by the definitions of EL(G) and EQ(G), Alhevaz et al. [17] recently defined the generalized
distance energy of G as the average deviation of generalized distance spectrum:

EDα(G) =
n

∑
i=1
|Θi|,

where

Θi = ∂i −
2αW(G)

n
.

As
n

∑
i=1

∂i = 2αW(G) and
n

∑
i=1

∂2
i = trace[Dα(G)]2 = 2(1− α)2

n

∑
1≤i<j≤n

(dij)
2 + α2

n

∑
i=1

Tr2
i , hence by the

definition of Θi, one can easily see that
n

∑
i=1

Θi = 0 and
n

∑
i=1

Θ2
i = P, where

P = 2(1− α)2
n

∑
1≤i<j≤n

(dij)
2 + α2

n

∑
i=1

Tr2
i −

4α2W2(G)

n
.

From the above definition, ED0(G) = ED(G) and 2E
D 1

2 (G) = EQ(G). Thus, exploring the
properties of EDα(G) and its dependency with parameter α could give us a unified picture of the
spectral properties of distance (signless Laplacian) energy of graphs.

The rest of the paper is structured as follows. In Section 2, for α ∈ [0, 1], we obtain some
sharp lower bounds for the generalized distance energy EDα(G) of a connected graph G resorting
to Wiener index W(G), transmission degrees, and the parameter α ∈ [0, 1]. The graphs attaining the
corresponding bounds are also characterized. In Section 3, we obtain sharp upper bounds for the
generalized distance energy EDα(G) involving diameter d, minimum degree δ, Wiener index W(G),
as well as transmission degrees. Some extremal graphs that attain these bounds are determined in this
section. As an application of our results in Section 3, we will be able to improve some recently given
upper bounds for distance (signless Laplacian) energy in [25].

2. Lower Bounds for EDα(G)

In this section, we give some sharp lower bounds for EDα(G) in terms of different graph
parameters. Firstly, we include some previous known results that will play a pivotal role in the
rest of the paper.

Lemma 1 ([16]). If G is a connected graph, then

∂(G) ≥ 2W(G)

n
,

where the equality holds if and only if G is transmission regular.

Lemma 2. Recall that {Tr1, Tr2, . . . , Trn} constitutes the transmission degrees. We have

∂(G) ≥

√
∑n

i=1 Tr2
i

n
,

where the equality holds if and only if G is transmission regular.

Proof. This lemma follows from (Theorem 2.2 [7]).
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Lemma 3 ([16]). Recall the second transmission degree sequence of G is {T1, T2, . . . , Tn}. We have

∂(G) ≥

√√√√∑n
i=1
(
αTr2

i + (1− α)Ti
)2

∑n
i=1 Tr2

i
.

Moreover, if 1
2 ≤ α ≤ 1, the equality holds if and only if G is transmission regular.

Remark 1. Keeping all of the notations from Lemma 3, we have

∂(G) ≥

√√√√∑n
i=1
(
αTr2

i + (1− α)Ti
)2

∑n
i=1 Tr2

i
≥ 2W(G)

n
.

In fact, as we always have ∑n
i=1 Ti = ∑n

i=1 Tr2
i , and also applying the Cauchy–Schwarz inequality, we have(

∑n
i=1 Ti

)2 ≤ n ∑n
i=1 T2

i and
(

∑n
i=1 Tri

)2 ≤ n ∑n
i=1 Tr2

i . Hence, we get

∂(G) ≥

√√√√∑n
i=1
(
αTr2

i + (1− α)Ti
)2

∑n
i=1 Tr2

i

≥

√√√√(
∑n

i=1(αTr2
i + (1− α)Ti)

)2

n ∑n
i=1 Tr2

i

=

√√√√(
∑n

i=1 Tr2
i
)2

n ∑n
i=1 Tr2

i
=

√
∑n

i=1 Tr2
i

n
≥

√(
∑n

i=1 Tri
)2

n2 =
2W(G)

n
.

Lemma 4 ([30]). Assume that ai and bi, i = 1, 2, . . . , n, are positive real numbers. We have

n

∑
i=1

a2
i

n

∑
i=1

b2
i ≤

1
4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2(
n

∑
i=1

aibi

)2

, (2)

where M1 = max1≤i≤n ai, M2 = max1≤i≤n bi, m1 = min1≤i≤n ai and m2 = min1≤i≤n bi.

Lemma 5 ([31]). If b1, b2, . . . , bn are positive numbers, then:

a1 + a2 + · · ·+ an

b1 + b2 + · · ·+ bn
≤ max

1≤i≤n

ai
bi

,

for any real numbers a1, a2, . . . , an. Equality holds if and only if ai
bi

are equal for all i.

The following lemma characterizes the graphs with exactly two distinct generalized distance eigenvalues.

Lemma 6. A connected graph G possesses precisely two different Dα(G) eigenvalues if and only if it is a
complete graph.

Proof. The proof is analogous to that of (Lemma 2.10 [32]).

Our first lower bound for the generalized distance energy EDα(G) relies on the Wiener index
W(G) as well as the transmission degrees.

Theorem 1. Assume that G is a connected graph with n > 1 nodes. We have
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EDα(G) ≥ n
∣∣∣∣det

(
Dα(G)− 2αW(G)

n

)∣∣∣∣ 1
n

,

where the equality holds if and only if G is a complete graph.

Proof. By the Cauchy–Schwarz inequality, we have

n

∑
i=1

√∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣ ≤
√√√√n

(
n

∑
i=1

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣
)

, (3)

that is, √
EDα(G) ≥

∑n
i=1

√∣∣∣∂i − 2αW(G)
n

∣∣∣
√

n
.

Since √∣∣∣∂1 − 2αW(G)
n

∣∣∣+√∣∣∣∂2 − 2αW(G)
n

∣∣∣+ · · ·+√∣∣∣∂n − 2αW(G)
n

∣∣∣
n

≥
(√∣∣∣∣∂1 −

2αW(G)

n

∣∣∣∣ ∣∣∣∣∂2 −
2αW(G)

n

∣∣∣∣ . . .
∣∣∣∣∂n −

2αW(G)

n

∣∣∣∣
) 1

n

,

hence we get

√
EDα(G) ≥

√
n

(√∣∣∣∣∂1 −
2αW(G)

n

∣∣∣∣ ∣∣∣∣∂2 −
2αW(G)

n

∣∣∣∣ . . .
∣∣∣∣∂n −

2αW(G)

n

∣∣∣∣
) 1

n

.

Thus, we have EDα(G) ≥ n
∣∣∣det

(
Dα(G)− 2αW(G)

n

)∣∣∣ 1
n .

Suppose that equality holds. Then, from equality in (3), we get√∣∣∣∣∂1 −
2αW(G)

n

∣∣∣∣ =
√∣∣∣∣∂2 −

2αW(G)

n

∣∣∣∣ = · · · =
√∣∣∣∣∂n −

2αW(G)

n

∣∣∣∣.
Hence, G has exactly one distinct Dα-eigenvalue or G has exactly two distinct Dα-eigenvalues. In

view of Lemma 6, we get G ∼= Kn, and the proof is complete.

Next, we give a lower bound for EDα(G) utilizing only the Wiener index W(G).

Theorem 2. Assume that G is a connected graph having n vertices. Suppose that α ≤ 1− n
2W(G)

. Then,

EDα(G) ≥ (1− α)
2W(G)

n
+ n− 1 + ln ∆− ln

(
(1− α)

2W(G)

n

)
, (4)

where ∆ =
∣∣∣det

(
Dα(G)− 2αW(G)

n I
)∣∣∣ . The equality in (4) holds if and only if α = 0 and G ∼= Kn or G is a

k-transmission regular graph with three different generalized distance eigenvalues represented as k, αk + 1 and
αk− 1.

Proof. We construct a function

f (x) = x− 2αW(G)

n
− 1− ln

(
x− 2αW(G)

n

)
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for x− 2αW(G)
n > 0. It is elementary to prove that f (x) is increasing for x− 2αW(G)

n ≥ 1 and decreasing

for 0 < x − 2αW(G)
n ≤ 1. Consequently, f (x) ≥ f

( 2αW(G)
n + 1

)
= 0, implying that x − 2αW(G)

n ≥
1+ ln

(
x− 2αW(G)

n

)
for x− 2αW(G)

n > 0, with equality holding if and only if x− 2αW(G)
n = 1. With these

at hand, we get

EDα(G) = ∂1 −
2αW(G)

n
+

n

∑
i=2

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣
≥ ∂1 −

2αW(G)

n
+ n− 1 +

n

∑
i=2

ln
∣∣∣∣∂i −

2αW(G)

n

∣∣∣∣ (5)

= ∂1 −
2αW(G)

n
+ n− 1 + ln

n

∏
i=2

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣
= ∂1 −

2αW(G)

n
+ n− 1 + ln ∆− ln

(
∂1 −

2αW(G)

n

)
. (6)

From Lemma 1, we know that ∂1 ≥ 2W(G)
n . Consider the function

g(x) = x− 2αW(G)

n
+ n− 1 + ln ∆− ln

(
x− 2αW(G)

n

)
.

It is straightforward to see that g(x) is an increasing function on 1 ≤ x− 2αW(G)
n ≤ n. Since for

α ≤ 1− n
2W(G)

we have x− 2αW(G)
n ≥ (1− α) 2W(G)

n ≥ 1, it follows that

g(x) ≥ g
(

2W(G)

n

)
= (1− α)

2W(G)

n
+ n− 1 + ln ∆− ln

(
(1− α)

2W(G)

n

)
.

In the light of these results and (5), we derive (4).
Suppose the equality holds in (4). Then, ∂1 = 2W(G)

n and so, by Lemma 1, G is a transmission

regular graph. From equality in (5), we get
∣∣∣∂i − 2αW(G)

n

∣∣∣ = 1, for i = 2, 3, . . . , n. This gives that∣∣∣∂i − 2αW(G)
n

∣∣∣ can have no more than two different values and we obtain the following:

(i) If ∂i − 2αW(G)
n = 1, for all i = 2, 3, . . . , n. Thus, ∂i = 1 + 2αW(G)

n for i = 2, 3, . . . , n, yielding that

G has a pair of different generalized distance eigenvalues, ∂1 = 2W(G)
n and ∂i = 1 + 2αW(G)

n .
Thus, by Lemma 6, G is complete. As the generalized distance eigenvalues of Kn are
spec(Kn) = {n− 1, αn− 1[n−1]}, the equality cannot hold.

(ii) If ∂i − 2αW(G)
n = −1 for i = 2, 3, . . . , n. In this case, ∂i =

2αW(G)
n − 1 for i = 2, 3, . . . , n. This means

G has a pair of different generalized distance eigenvalues, ∂1 = 2W(G)
n and ∂i =

2αW(G)
n − 1. Thus,

by Lemma 6 , G is complete, which is true for α = 0, giving that equality occurs in this case for
α = 0 and if and only if G ∼= Kn.

(iii) In this case, let, for some t, ∂i − 2αW(G)
n = 1, for i = 2, 3, . . . , t and ∂i − 2αW(G)

n = −1, for
i = t + 1, . . . , n. This indicates that G is transmission regular graph possessing three different
generalized eigenvalues, spec(G) =

{
∂1, α∂1 + 1[t−1], α∂1 − 1[n−t]

}
.

On the other hand, suppose that G ∼= Kn. Noting the generalized distance eigenvalues of Kn

are spec(Kn) = {n − 1, αn − 1[n−1]}, and 2αW(Kn)
n = α(n − 1), we obtain that the equality holds

in (4). In addition, if G is k-transmission regular graph possessing three different generalized distance
eigenvalues k, αk + 1 and αk− 1, then the equality is true.
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Now, by Remark 1 and proceeding similarly to Theorem 2, we obtain the following lower bound
for EDα(G) using the transmission degrees as well as the second transmission degrees.

Theorem 3. Let G be a connected graph with n vertices and α ≤ 1− n
2W(G)

. Then,

EDα(G) ≥

√√√√∑n
i=1
(
αTr2

i + (1− α)Ti
)2

∑n
i=1 Tr2

i
− 2αW(G)

n
+ n− 1

+ ln ∆− ln


√√√√∑n

i=1
(
αTr2

i + (1− α)Ti
)2

∑n
i=1 Tr2

i
− 2αW(G)

n

 , (7)

where ∆ =
∣∣∣det

(
Dα(G)− 2αW(G)

n I
)∣∣∣ . The equality in (7) holds if and only if α = 0 and G ∼= Kn or G is a

k-transmission regular graph with three different generalized distance eigenvalues, namely k, αk + 1 and αk− 1.

We conclude this section by giving another sharp lower bound on the generalized distance energy.

Theorem 4. Let G be connected with n vertices and ρn ≥ (2α− 1) 2W(G)
n , α 6= 1. Then,

EDα(G) ≥ ϕ + (n− 1)


∣∣∣det

(
Dα(G)− 2αW(G)

n

)∣∣∣
ϕ


1

n−1

, (8)

where ϕ = max
{

∂1 − 2αW(G)
n , 2αW(G)

n − ∂n

}
. Equality holds if and only if either G is a complete graph or a

graph with exactly three distinct Dα-eigenvalues.

Proof. Applying the Cauchy–Schwarz inequality, we obtain

n

∑
i=2

√∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣ ≤
√√√√(n− 1)

(
n

∑
i=2

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣
)

, (9)

that is,
n

∑
i=2

√∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣ ≤
√
(n− 1)

(
EDα(G)−

(
∂1 −

2αW(G)

n

))
.

Since √∣∣∣∂2 − 2αW(G)
n

∣∣∣+ · · ·+√∣∣∣∂n − 2αW(G)
n

∣∣∣
n− 1

≥
(√∣∣∣∣∂2 −

2αW(G)

n

∣∣∣∣ . . .
∣∣∣∣∂n −

2αW(G)

n

∣∣∣∣
) 1

n−1

,

we obtain

√
EDα(G)−

(
∂1 −

2αW(G)

n

)
≥

∑n
i=2

√∣∣∣∂i − 2αW(G)
n

∣∣∣
√

n− 1

≥
(n− 1)

(√∣∣∣∂2 − 2αW(G)
n

∣∣∣ ∣∣∣∂3 − 2αW(G)
n

∣∣∣ . . .
∣∣∣∂n − 2αW(G)

n

∣∣∣) 1
n−1

√
n− 1

.
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Thus, we have

EDα(G) ≥ ∂1 −
2αW(G)

n
+ (n− 1)

(∣∣∣∣∂2 −
2αW(G)

n

∣∣∣∣ ∣∣∣∣∂3 −
2αW(G)

n

∣∣∣∣ . . .
∣∣∣∣∂n −

2αW(G)

n

∣∣∣∣) 1
n−1

= ∂1 −
2αW(G)

n
+ (n− 1)


∣∣∣det

(
Dα(G)− 2αW(G)

n

)∣∣∣
∂1 − 2αW(G)

n


1

n−1

.

Let us consider a function

f (x) = x + (n− 1)


∣∣∣det

(
Dα(G)− 2αW(G)

n

)∣∣∣
x


1

n−1

.

Then,

f ′(x) = 1−

∣∣∣det
(

Dα(G)− 2αW(G)
n

)∣∣∣ 1
n−1

x
n

n−1
and f ′′(x) =

n
∣∣∣det

(
Dα(G)− 2αW(G)

n

)∣∣∣ 1
n−1

(n− 1)x
2n−1
n−1

.

In order to calculate the extreme point, we require f ′(x) = 0. This implies

x =

∣∣∣∣det
(

Dα(G)− 2αW(G)

n

)∣∣∣∣ 1
n

.

At this point,

f ′′(x) =
n

n− 1

∣∣∣∣det
(

Dα(G)− 2αW(G)

n

)∣∣∣∣−1
n
≥ 0 for all n > 1.

Therefore, the function f (x) reaches a minimum at x =
∣∣∣det

(
Dα(G)− 2αW(G)

n

)∣∣∣ 1
n , and the

minimum value is

f

(∣∣∣∣det
(

Dα(G)− 2αW(G)

n

)∣∣∣∣ 1
n
)

= n
∣∣∣∣det

(
Dα(G)− 2αW(G)

n

)∣∣∣∣ 1
n

.

However,∣∣∣∂1 − 2αW(G)
n

∣∣∣+ · · ·+ ∣∣∣∂n − 2αW(G)
n

∣∣∣
n

≥
(∣∣∣∣∂1 −

2αW(G)

n

∣∣∣∣ . . .
∣∣∣∣∂n −

2αW(G)

n

∣∣∣∣) 1
n

.

Suppose that β is the integer such that ∂β ≥ 2αW(G)
n and ∂β+1 ≤ 2αW(G)

n . By Lemma 5, we have∣∣∣∂1 − 2αW(G)
n

∣∣∣+ · · ·+ ∣∣∣∂n − 2αW(G)
n

∣∣∣
n

≤ max
1≤i≤n


∣∣∣∂i − 2αW(G)

n

∣∣∣
1


= max

{
max

1≤i≤β

{
∂i −

2αW(G)

n

}
, max

β+1≤i≤n

{
2αW(G)

n
− ∂i

}}
= max

{
∂1 −

2αW(G)

n
,

2αW(G)

n
− ∂n

}
.
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Then, for ρn ≥ (2α− 1) 2W(G)
n , and α 6= 1, we have

∂1 −
2αW(G)

n
≥ max

{
∂1 −

2αW(G)

n
,

2αW(G)

n
− ∂n

}
,

which implies that

∣∣∣∣det
(

Dα(G)− 2αW(G)

n

)∣∣∣∣ 1
n
≤ max

{
∂1 −

2αW(G)

n
,

2αW(G)

n
− ∂n

}
.

Therefore, the function f (x) is increasing in the interval

∣∣∣∣det
(

Dα(G)− 2αW(G)

n

)∣∣∣∣ 1
n
< max

{
∂1 −

2αW(G)

n
,

2αW(G)

n
− ∂n

}
≤ x,

and then

f (x) ≥ f
(

max
{

∂1 −
2αW(G)

n
,

2αW(G)

n
− ∂n

})
.

Hence,

EDα(G) ≥ ϕ + (n− 1)


∣∣∣det

(
Dα(G)− 2αW(G)

n

)∣∣∣
ϕ


1

n−1

,

where ϕ = max
{

∂1 − 2αW(G)
n , 2αW(G)

n − ∂n

}
. The first half of the proof is complete.

Now, suppose equality holds in (8). In this situation,

∂1 = max
{

∂1 −
2αW(G)

n
,

2αW(G)

n
− ∂n

}
+

2αW(G)

n
.

From equality in (9), we get√∣∣∣∣∂2 −
2αW(G)

n

∣∣∣∣ =
√∣∣∣∣∂3 −

2αW(G)

n

∣∣∣∣ = · · · =
√∣∣∣∣∂n −

2αW(G)

n

∣∣∣∣,
and hence (

n

∑
i=2

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣
)2

= (n− 1)

(
P−

(
∂1 −

2αW(G)

n

)2
)

,

where

P = 2(1− α)2 ∑
1≤i<j≤n

(dij)
2 + α2

n

∑
i=1

Tr2
i −

4α2W2(G)

n
.

Therefore, ∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣ =
√√√√P−

(
∂1 − 2αW(G)

n

)2

n− 1
, i = 2, . . . , n.

Hence,
∣∣∣∂i − 2αW(G)

n

∣∣∣ can have at most two distinct values and we arrive at the following:

(i) G has only one Dα-eigenvalue. Then, G ∼= K1.
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(ii) G has precisely a pair of different Dα-eigenvalues. Thanks to Lemma 6, G ∼= Kn. Note that

spec(Dα(Kn)) =
{

n− 1, αn− 1[n−1]
}

. Hence, if G ∼= Kn, then

max
{

∂1 −
2αW(G)

n
,

2αW(G)

n
− ∂n

}
= (1− α)(n− 1),

∣∣∣∣det
(

Dα(G)− 2αW(G)

n

)∣∣∣∣ = (1− α)2(n− 1)2,

and hence EDα (G) = 2(1− α)(n− 1).

(iii) G possesses precisely three different Dα-eigenvalues. Therefore,

∂1 = max
{

∂1 −
2αW(G)

n
,

2αW(G)

n
− ∂n

}
+

2αW(G)

n

and ∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣ =
√√√√P−

(
max

{
∂1 −

2αW(G)
n , 2αW(G)

n − ∂n

})2

n− 1
, i = 2, . . . , n.

Then, we get that G is a graph with exactly three distinct Dα-eigenvalues, and the result follows.

Some well-known special graphs include Hamming graph H(n, d), the complete split graph
CSt,n−t and the lexicographic product graph G[H]. For H(n, d), its vertex set is represented by Xn

with d elements in X. If precisely one coordinate of two vertices are different, then they are adjacent.
In particular, H(n, 2) becomes the cube Qn. The graph CSt,n−t is composed of a clique over t vertices
and an independent set of n− t vertices. The vertices in cliques are required to be neighbors of each
vertex in the independent set. G[H] has the vertex set V(G)× V(H) and two vertices are adjacent
whenever their first coordinates are adjacent in G or they have the same first coordinate, but their
second coordinates are adjacent in H.

Remark 2. Note that there are some graphs that have exactly three or four distinct generalized distance
eigenvalues. For example, the star graph, the cycle C4, the cycle C5, and square of the hypercube of dimension n,
Q2

n have exactly three distinct generalized distance eigenvalues. In addition, the complete bipartite graph Ka,b,
where a, b ≥ 3, a + b = n, the complete split graph CSt,n−t, the complement of an edge Kn − e and the closed
fence C4[K2] have four different generalized distance eigenvalues.

Although we have given in Remark 2 some special classes of graphs with exactly three and exactly
four distinct generalized distance eigenvalues, we were unable to giving a complete characterization of
such graphs. It will be an interesting problem to characterize all the connected graphs having precisely
three or four distinct generalized distance eigenvalues. Therefore, we leave the following problems:

Problem 1. Characterize all the connected graphs having precisely three different generalized distance eigenvalues.

Problem 2. Characterize all the connected graphs having precisely four different generalized distance eigenvalues.

3. Upper Bounds for EDα(G)

In this section, we obtain some sharp upper bounds for the generalized distance energy EDα(G)

of a connected graph G by using diameter d, minimum degree δ, Wiener’s index W(G), as well as
transmission degrees. The extremal graphs are characterized accordingly. As an application of our
results, we will be able to improve some recently given upper bounds for distance energy and distance
signless Laplacian energy of a graph G in [25].
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Remark 3. Following [25], we have

2 ∑
1≤i<j≤n

(dij)
2 <

(∑n
i=1 Tri)

2

n
.

Also, since ( n

∑
i=1

Ti

)2
≤ n

n

∑
i=1

T2
i and

( n

∑
i=1

Tri

)2
≤ n

n

∑
i=1

Tr2
i ,

then we get √
2(1− α)2 ∑1≤i<j≤n(dij)2 + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n

n

<

√√√√ (1−α)2(∑n
i=1 Tri)

2

n + α2 ∑n
i=1 Tr2

i −
α2(∑n

i=1 Tri)
2

n
n

=

√√√√ (1− 2α)
(∑n

i=1 Tri)
2

n + α2 ∑n
i=1 Tr2

i
n

.

Hence, if 0 ≤ α ≤ 1
2 , then√√√√ (1− 2α)

(∑n
i=1 Tri)

2

n + α2 ∑n
i=1 Tr2

i
n

≤

√
(1− 2α)∑n

i=1 Tr2
i + α2 ∑n

i=1 Tr2
i

n

= (1− α)

√
∑n

i=1 Tr2
i

n
.

Theorem 5. Let G be a connected graph of order n. If 0 ≤ α ≤ 1
2 , then

EDα(G) ≤ (1− α)

√
∑n

i=1 Tr2
i

n
+

√√√√(n− 1)

(
P− (1− α)2 ∑n

i=1 Tr2
i

n

)
, (10)

where P = 2(1− α)2 ∑1≤i<j≤n(dij)
2 + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n . Equality holds if and only if either G is a

complete graph or G is a graph with exactly three distinct Dα-eigenvalues.

Proof. Applying the Cauchy–Schwarz inequality, we have(
n

∑
i=2

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣
)2

≤ (n− 1)

(
n

∑
i=2

(
∂i −

2αW(G)

n

)2
)

. (11)

Hence, (
EDα(G)−

∣∣∣∣∂1 −
2αW(G)

n

∣∣∣∣)2

≤ (n− 1)
(

P−
(

∂1 −
2αW(G)

n

)2 )
.

Thus,

EDα(G) ≤ ∂1 −
2αW(G)

n
+

√√√√(n− 1)

(
P−

(
∂1 −

2αW(G)

n

)2
)

.
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We construct a function

f (x) = x +
√
(n− 1) (P− x2).

It follows from straightforward calculations that the function f (x) monotonically decreases for

x ≥
√

P
n . Now, by Lemma 2, Remark 3, and inequality

2W(G)

n
=

√
(∑n

i=1 Tri)
2

n2 ≤

√
∑n

i=1 Tr2
i

n
,

we have

∂1 ≥

√
∑n

i=1 Tr2
i

n
≥ (1− α)

√
∑n

i=1 Tr2
i

n
+

2αW(G)

n
≥
√

P
n
+

2αW(G)

n
,

and hence

x ≥ (1− α)

√
∑n

i=1 Tr2
i

n
≥
√

P
n

.

The first half of the proof is complete.

If the equality holds in (10), we see that

∂1 = (1− α)

√
∑n

i=1 Tr2
i

n
+

2αW(G)

n
.

From equality in (11), we get∣∣∣∣∂2 −
2αW(G)

n

∣∣∣∣ = ∣∣∣∣∂3 −
2αW(G)

n

∣∣∣∣ = · · · = ∣∣∣∣∂n −
2αW(G)

n

∣∣∣∣ ,

then we have ∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣ =
√√√√P−

(
∂1 − 2αW(G)

n

)2

n− 1
, i = 2, . . . , n.

Hence,
∣∣∣∂i − 2αW(G)

n

∣∣∣ can have no more than a pair of different values and we arrive at the following:

(i) G has only one Dα-eigenvalue. Then, G ∼= K1.

(ii) G has precisely a pair of different Dα-eigenvalues. Thanks to Lemma 6, G ∼= Kn.

(iii) G has precisely three different Dα-eigenvalues. We have

∂1 = (1− α)

√
∑n

i=1 Tr2
i

n
+

2αW(G)

n
,
∣∣∣∣∂i −

2αW(G)

n

∣∣∣∣ =
√

P− (1−α)2 ∑n
i=1 Tr2

i
n

n− 1
, i = 2, . . . , n.

Then, we obtain that G is a graph with three distinct Dα-eigenvalues.

The following result gives an upper bound for the generalized distance energy EDα(G) using
Wiener’s index W(G), diameter d as well as minimum degree δ.
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Corollary 1. Let G be connected having n vertices. If 0 ≤ α ≤ 1
2 , then

EDα(G) ≤ (1− α)σ +
√
(n− 1) (P− (1− α)2σ2),

where σ = dn− d(d−1)
2 − 1− δ(d− 1), where the equality holds if and only if either G is a complete graph or

G is a graph with precisely three different Dα-eigenvalues.

Proof. A line of calculation shows

Trp =
n

∑
j=1

djp ≤ dp + 2 + 3 + · · ·+ (d− 1) + d(n− 1− dp − (d− 2))

= dn− d(d− 1)
2

− 1− dp(d− 1), for all p = 1, 2, . . . , n. (12)

Hence, if 0 ≤ α ≤ 1
2 , then, by Theorem 5, we get

(1− α)

√
∑n

i=1 Tr2
i

n
≤ (1− α)

√√√√n
(

dn− d(d−1)
2 − 1− δ(d− 1)

)2

n

= (1− α)

(
dn− d(d− 1)

2
− 1− δ(d− 1)

)
.

Hence, from the upper bound of Theorem 5, the first part of the proof is done. The rest of the
proof follows Theorem 5.

Since for any i, we have n− 1 ≤ Tri ≤ n(n−1)
2 , hence one can analogously show the following theorem.

Corollary 2. Let G be connected possessing n vertices. If 0 ≤ α ≤ 1
2 , then

EDα(G) ≤ S +
√
(n− 1) (P− S2),

where S = n(1−α)(n−1)
2 . The equality holds if and only if either G is a complete graph or G is a graph with

exactly three distinct Dα-eigenvalues.

Remark 4. If G is connected possessing positive generalized distance eigenvalues, then for 0 ≤ α ≤ 1
2 , we have

2(1− α)2 ∑1≤i<j≤n(dij)
2 + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n

n
≤ 4(1− α)2W2(G)

n2 , (13)

since ∑n
i=1 a2

i < 2
n (∑n

i=1 ai)
2 , where a1, . . . , an are positive real numbers (see [25]); hence, we get

2(1− α)2 ∑
1≤i<j≤n

(dij)
2 + α2

n

∑
i=1

Tr2
i =

n

∑
i=1

∂2
i <

2
n

(
n

∑
i=1

∂i

)2

=

8α2W2(G)

n
≤ 4(2α2 − 2α + 1)W2(G)

n
=

4(1− α)2W2(G)

n
+

4α2W2(G)

n
.

Hence, it can be easily seen that the inequality occurs in (13). On the other hand, since
(

∑n
i=1 Tri

)2 ≤
n ∑n

i=1 Tr2
i , we obtain
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√
2(1− α)2 ∑1≤i<j≤n(dij)2 + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n

n

≥

√√√√2(1− α)2 ∑1≤i<j≤n(dij)2 +
α2(∑n

i=1 Tri)
2

n − α2(∑n
i=1 Tri)

2

n
n

=

√
2(1− α)2 ∑1≤i<j≤n(dij)2

n
≥

√
2(1− α)2 ∑1≤i<j≤n dij

n
≥ (1− α)

√
2W(G)

n
.

Theorem 6. Let G be connected having n ≥ 3 vertices.

(i) If α = 0, then

ED(G) ≤ 2W(G)

n
+

√
2W(G)

n
+

√√√√(n− 2)

(
2 ∑

1≤i<j≤n
(dij)2 − 2W(G)

n
− 4W2(G)

n2

)
.

(ii) If 0 < α ≤ 1
2 and ∂n ≥ (1− α)

(
2W(G)

n −
√

2W(G)
n

)
, then

EDα(G) ≤ 2(1− α)W(G)

n
+ (1− α)

√
2W(G)

n

+

√
(n− 2)

(
P− 2(1− α)2W(G)

n
− 4(1− α)2W2(G)

n2

)
,

where P = 2(1− α)2 ∑1≤i<j≤n(dij)
2 + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n . The equality holds if and only if G

possesses precisely three or four different Dα-eigenvalues.

Proof. Invoking the Cauchy–Schwarz inequality, we obtain(
n−1

∑
i=2

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣
)2

≤
(

n−1

∑
i=2

1

)(
n−1

∑
i=2

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣2
)

,

and then

EDα(G) ≤
∣∣∣∣∂1 −

2αW(G)

n

∣∣∣∣+ ∣∣∣∣∂n −
2αW(G)

n

∣∣∣∣
+

√√√√(n− 2)

(
P−

(
∂1 −

2αW(G)

n

)2

−
(

∂n −
2αW(G)

n

)2
)

,

where P = 2(1 − α)2 ∑1≤i<j≤n(dij)
2 + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n . Let x =

∣∣∣∂1 − 2αW(G)
n

∣∣∣ and y =∣∣∣∂n − 2αW(G)
n

∣∣∣. We define the function

f (x, y) = x + y +
√
(n− 2)(P− x2 − y2).
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Taking derivatives on f (x, y) with respect to x and y, we have

fx = 1− x(n− 2)√
(n− 2) (P− x2 − y2)

, fy = 1− y(n− 2)√
(n− 2) (P− x2 − y2)

,

fxx = −
(

P− y2)√n− 2√
(P− x2 − y2)

3
, fyy = −

(
P− x2)√n− 2√
(P− x2 − y2)

3
and fxy = − xy

√
n− 2√

(P− x2 − y2)
3

.

In order to calculate the extreme values, we set fx = 0 and fy = 0, This yields x = y =
√

P
n .

At this point, the values of fxx, fyy, fxy and ∆ = fxx fyy − f 2
xy are

fxx = − (n− 1)
√

n− 2√
P(n−2)3

n

≤ 0, fyy = − (n− 1)
√

n− 2√
P(n−2)3

n

≤ 0,

fxy = −
√

n− 2√
P(n−2)3

n

≤ 0 and ∆ =
n(n2 − 3n + 3)

P(n− 2)2 ≥ 0.

Hence, f (x, y) has maximum value at this point, and accordingly f
(√

P
n ,
√

P
n

)
=
√

nP.

Nevertheless, f (x, y) decreases in the intervals√
P
n
≤ x ≤

√
P
2

and 0 ≤ y ≤
√

P
n
≤
√

P
2

.

We examine the following two situations:

(i) If α = 0, then as 2 ∑1≤i<j≤n(dij)
2 <

(∑n
i=1 Tri)

2

n (see [25]), we obtain

√
P
n
=

√
2 ∑1≤i<j≤n(dij)2

n
<

√
(∑n

i=1 Tri)
2

n2 =
2W(G)

n
.

In addition, we obtain

√
P
n
=

√
2 ∑1≤i<j≤n(dij)2

n
≥

√
2 ∑1≤i<j≤n(dij)

n
=

√
2W(G)

n
.

Hence, √
P
n
≤ 2W(G)

n
≤ x ≤

√
P
2

and 0 ≤ y ≤
√

2W(G)

n
≤
√

P
n

.

Then,

f (x, y) ≤ f

(
2W(G)

n
,

√
2W(G)

n

)
≤ f

(√
P
n

,

√
P
n

)
.

Therefore,

ED0(G) ≤ 2W(G)

n
+

√
2W(G)

n
+

√√√√(n− 2)

(
2 ∑

1≤i<j≤n
(dij)2 − 2W(G)

n
− 4W2(G)

n2

)
.
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(ii) If 0 < α ≤ 1
2 , then, by Remark 4, as ∂1 ≥ ∂2 ≥ . . . ≥ ∂n > 0, we have√

P
n
≤ 2(1− α)W(G)

n
≤ x ≤

√
P
2

.

Again by Remark 4 and as ∂n ≥ (1− α)

(
2W(G)

n −
√

2W(G)
n

)
, we get

0 ≤ y ≤ (1− α)

√
2W(G)

n
≤
√

P
n

.

Then,

f (x, y) ≤ f

(
2(1− α)W(G)

n
, (1− α)

√
2W(G)

n

)
≤ f

(√
P
n

,

√
P
n

)
.

Therefore,

EDα(G) ≤ 2(1− α)W(G)

n
+ (1− α)

√
2W(G)

n

+

√
(n− 2)

(
P− 2(1− α)2W(G)

n
− 4(1− α)2W2(G)

n2

)
.

The rest of the proof follows from Theorem 4.

Remark 5. Keeping all of the notations from Theorem 6, and taking

h(x, y) = x + y +
√
(n− 1)(P− x2 − y2),

then it is clear that f (x, y) ≤ h(x, y) for all (x, y) in the given region of x and y. For 0 ≤ α ≤ 1
2 , along

x = 2(1−α)W(G)
n ,

f (x, y) =
2(1− α)W(G)

n
+ y +

√
(n− 2)

(
P− 4(1− α)2W2(G)

n2 − y2
)

,

where P = 2(1− α)2 ∑1≤i<j≤n(dij)
2 + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n . The function f

(
2(1−α)W(G)

n , y
)

decreases in

the interval 0 ≤ y ≤
√

P− 4(1−α)2W2(G)
n2 . By Remark 4, we have

2(1− α)2W(G) ≤ P ≤ 4(1− α)2W2(G)

n
,

hence as P ≥ 8(1−α)2W2(G)
n2 ≥ 2(1− α)2W(G), we have

0 ≤ y ≤ (1− α)

√
2W(G)

n
≤
√

P− 4(1− α)2W2(G)

n2 .

Thus,

f

(
2(1− α)W(G)

n
, (1− α)

√
2W(G)

n

)
≤ f

(
2(1− α)W(G)

n
, 0
)

.

Since

f
(

2(1− α)W(G)

n
, 0
)
≤ h

(
2(1− α)W(G)

n
, 0
)
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and

h
(

2(1− α)W(G)

n
, 0
)
=

2(1− α)W(G)

n
+

√
(n− 1)

(
P− 4(1− α)2W2(G)

n2

)
,

then

f

(
2(1− α)W(G)

n
, (1− α)

√
2W(G)

n

)
≤ h

(
2(1− α)W(G)

n
, 0
)

.

Hence,

2(1− α)W(G)

n
+ (1− α)

√
2W(G)

n
+

√
(n− 2)

(
P− 2(1− α)2W(G)

n
− 4(1− α)2W2(G)

n2

)

≤ 2(1− α)W(G)

n
+

√
(n− 1)

(
P− 4(1− α)2W2(G)

n2

)
.

The following upper bound was proved in in [25]:

ED(G) ≤ 2W(G)

n
+

√√√√(n− 1)

(
2 ∑

1≤i<j≤n
(dij)2 − 4W2(G)

n2

)
. (14)

Remark 6. For α = 0, it is easily seen by Remark 5 that the upper bound in Theorem 6 improves that presented
in (14).

In addition, the following upper bound for the distance signless Laplacian energy EQ(G) was
obtained in [25]:

EQ(G) ≤ 2W(G)

n
+

√√√√(n− 1)

(
2 ∑

1≤i<j≤n
(dij)2 +

n

∑
i=1

Tr2
i −

4W2(G)

n
− 4W2(G)

n2

)
. (15)

Remark 7. For α = 1
2 , it is not difficult to see by Remark 5 that the upper bound shown in Theorem 6 improves

that presented in (15).

We recall the following lemma.

Lemma 7 (Theorem 2.11 [8]). Let G have n > 1 vertices. For the largest and second largest generalized
distance eigenvalues ∂1 and ∂2 of G, we have

∂1 + ∂2 ≤
4αW(G) +

√
2 (8α2W2(G)− n (4α2W2(G)− K(n− 2)))

n
,

where K = 2(1− α)2 ∑1≤i<j≤n(dij)
2 + α2 ∑n

i=1 Tr2
i . Equality holds if and only if G is a graph with exactly

three or exactly four distinct Dα-eigenvalues.

We conclude with the following upper bound by using only the Wiener index W(G).

Theorem 7. Let G be connected having n > 1 vertices. If ∂2 ≥ 2αW(G)
n , then

EDα(G) ≤
√

2 (8α2W2(G)− n (4α2W2(G)− K(n− 2)))
n

+
√

P(n− 2), (16)
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where K = 2(1− α)2 ∑1≤i<j≤n(dij)
2 + α2 ∑n

i=1 Tr2
i and P = K− 4α2W2(G)

n . The equality holds if and only if
G is a graph with precisely three or four different Dα-eigenvalues.

Proof. Thanks to the Cauchy–Schwarz inequality, we obtain(
n

∑
i=3

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣
)2

≤
(

n

∑
i=3

1

)(
n

∑
i=3

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣2
)

.

Then,

EDα(G) ≤
∣∣∣∣∂1 −

2αW(G)

n

∣∣∣∣+ ∣∣∣∣∂2 −
2αW(G)

n

∣∣∣∣
+

√√√√(n− 2)

(
P−

((
∂1 −

2αW(G)

n

)2

+

(
∂2 −

2αW(G)

n

)2
))

,

where P = 2(1− α)2 ∑1≤i<j≤n(dij)
2 + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n . Hence, by Lemma 7, we get

EDα(G) ≤
√

2 (8α2W2(G)− n (4α2W2(G)− K(n− 2)))
n

+

√√√√(n− 2)

(
P−

((
∂1 −

2αW(G)

n

)2

+

(
∂2 −

2αW(G)

n

)2
))

,

where K = 2(1− α)2 ∑1≤i<j≤n(dij)
2 + α2 ∑n

i=1 Tr2
i . Construct a function

f (x, y) =
√

2 (8α2W2(G)− n (4α2W2(G)− K(n− 2)))
n

+
√
(n− 2) (P− (x2 + y2)).

Taking derivatives on f (x, y) regarding x and y, we have

fx = − x
√

n− 2√
P− (x2 + y2)

, fy = − y
√

n− 2√
P− (x2 + y2)

,

fxx = − (P− y2)
√

n− 2√
(P− (x2 + y2))3

, fyy = − (P− x2)
√

n− 2√
(P− (x2 + y2))3

, fxy = − xy
√

n− 2√
(P− (x2 + y2))3

.

In order to calculate the extreme points, we set fx = 0 and fy = 0. This yields x = y = 0. At this

point, the values of fxx, fyy, fxy and ∆ = fxx fyy − f 2
xy are fxx = −

√
n−2

P , fyy = −
√

n−2
P , fxy = 0 and

∆ = fxx fyy − ( fxy)2 = n−2
P ≥ 0. Then, f (x, y) attains maximum value at x = y = 0, hence

f (0, 0) =

√
2 (8α2W2(G)− n (4α2W2(G)− K(n− 2)))

n
+
√

P(n− 2).

Thus,

EDα(G) ≤
√

2 (8α2W2(G)− n (4α2W2(G)− K(n− 2)))
n

+
√

P(n− 2).

The rest of the proof follows similarly as Theorem 4.
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4. Conclusions

The notion of generalized distance energy of a graph G was first motivated in Alhevaz et al. [17]
as the average deviation of generalized distance spectrum:

EDα(G) =
n

∑
i=1

∣∣∣∂i −
2αW(G)

n

∣∣∣,
where W(G) is Wiener’s index. Arguably, the distance and the distance signless Laplacian play a
pivotal role in mathematics as they offer more information than the classical binary adjacency matrix.
In this work, we along this line further investigate the energy of a generalized distance matrix. It forms
a natural extension of the theory of distance energy as well as distance signless Laplacian energy.
The spectral properties of these relevant individual combinatorial matrices can be derived as special
situations in the framework of a generalized distance matrix. We developed some properties of EDα(G)

by establishing new inequalities including sharp upper and lower bounds linking a range of invariants
such as diameter, extreme degree, Wiener’s index as well as transmission degrees. Existing bounds
in the literature have been improved and extremal graphs have been determined. For future work,
it would be desirable to derive some other sharp bounds for the generalized distance energy leveraging
a variety of graph invariants.
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