512 research outputs found

    Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap

    Full text link
    An open-loop single-user multiple-input multiple-output communication scheme is considered where a transmitter, equipped with multiple antennas, encodes the data into independent streams all taken from the same linear code. The coded streams are then linearly precoded using the encoding matrix of a perfect linear dispersion space-time code. At the receiver side, integer-forcing equalization is applied, followed by standard single-stream decoding. It is shown that this communication architecture achieves the capacity of any Gaussian multiple-input multiple-output channel up to a gap that depends only on the number of transmit antennas.Comment: to appear in the IEEE Transactions on Information Theor

    Integer-Forcing Linear Receivers

    Get PDF
    Linear receivers are often used to reduce the implementation complexity of multiple-antenna systems. In a traditional linear receiver architecture, the receive antennas are used to separate out the codewords sent by each transmit antenna, which can then be decoded individually. Although easy to implement, this approach can be highly suboptimal when the channel matrix is near singular. This paper develops a new linear receiver architecture that uses the receive antennas to create an effective channel matrix with integer-valued entries. Rather than attempting to recover transmitted codewords directly, the decoder recovers integer combinations of the codewords according to the entries of the effective channel matrix. The codewords are all generated using the same linear code which guarantees that these integer combinations are themselves codewords. Provided that the effective channel is full rank, these integer combinations can then be digitally solved for the original codewords. This paper focuses on the special case where there is no coding across transmit antennas and no channel state information at the transmitter(s), which corresponds either to a multi-user uplink scenario or to single-user V-BLAST encoding. In this setting, the proposed integer-forcing linear receiver significantly outperforms conventional linear architectures such as the zero-forcing and linear MMSE receiver. In the high SNR regime, the proposed receiver attains the optimal diversity-multiplexing tradeoff for the standard MIMO channel with no coding across transmit antennas. It is further shown that in an extended MIMO model with interference, the integer-forcing linear receiver achieves the optimal generalized degrees-of-freedom.Comment: 40 pages, 16 figures, to appear in the IEEE Transactions on Information Theor

    Polar codes and polar lattices for independent fading channels

    Get PDF
    In this paper, we design polar codes and polar lattices for i.i.d. fading channels when the channel state information is only available to the receiver. For the binary input case, we propose a new design of polar codes through single-stage polarization to achieve the ergodic capacity. For the non-binary input case, polar codes are further extended to polar lattices to achieve the egodic Poltyrev capacity, i.e., the capacity without power limit. When the power constraint is taken into consideration, we show that polar lattices with lattice Gaussian shaping achieve the egodic capacity of fading channels. The coding and shaping are both explicit, and the overall complexity of encoding and decoding is O(N log2 N)

    Eight-dimensional Polarization-ring-switching Modulation Formats

    Full text link
    We propose two 8-dimensional (8D) modulation formats (8D-2048PRS-T1 and 8D-2048PRS-T2) with a spectral efficiency of 5.5 bit/4D-sym, where the 8 dimensions are obtained from two time slots and two polarizations. Both formats provide a higher tolerance to nonlinearity by selecting symbols with nonidentical states of polarization (SOPs) in two time slots. The performance of these novel 8D modulation formats is assessed in terms of the effective signal-to-noise ratio (SNR) and normalized generalized mutual information. 8D-2048PRS-T1 is more suitable for high SNRs, while 8D-2048PRS-T2 is shown to be more tolerant to nonlinearities. A sensitivity improvement of at least 0.25 dB is demonstrated by maximizing normalized generalized mutual information (NGMI). For a long-haul nonlinear optical fiber transmission system, the benefit of mitigating the nonlinearity is demonstrated and a reach increase of 6.7% (560 km) over time-domain hybrid four-dimensional two-amplitude eight-phase shift keying (TDH-4D-2A8PSK) is observed
    • …
    corecore