156,542 research outputs found

    On Murty-Simon Conjecture II

    Full text link
    A graph is diameter two edge-critical if its diameter is two and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter two edge-critical graph on nn vertices is at most n24\lfloor \frac{n^{2}}{4} \rfloor and the extremal graph is the complete bipartite graph Kn2,n2K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}. In the series papers [7-9], the Murty-Simon Conjecture stated by Haynes et al. is not the original conjecture, indeed, it is only for the diameter two edge-critical graphs of even order. In this paper, we completely prove the Murty-Simon Conjecture for the graphs whose complements have vertex connectivity \ell, where =1,2,3\ell = 1, 2, 3; and for the graphs whose complements have an independent vertex cut of cardinality at least three.Comment: 9 pages, submitted for publication on May 10, 201

    AUTOMATED CONJECTURING ON THE INDEPENDENCE NUMBER AND MINIMUM DEGREE OF DIAMETER-2-CRITICAL GRAPHS

    Get PDF
    A diameter-2-critical (D2C) graph is a graph with diameter two such that removing any edge increases the diameter or disconnects the graph. In this paper, we look at other lesser-studied properties of D2C graphs, focusing mainly on their independence number and minimum degree. We show that there exist D2C graphs with minimum degree strictly larger than their independence number, and that this gap can be arbitrarily large. We also exhibit D2C graphs with maximum number of common neighbors strictly greater than their independence number, and that this gap can be arbitrarily large. Furthermore, we exhibit a D2C graph whose number of distinct degrees in its degree sequence is strictly greater than its independence number. Additionally, we characterize D2C graphs with independence number 2 and show that all such graphs have independence number greater or equal to their minimum degree

    Random graph asymptotics on high-dimensional tori II. Volume, diameter and mixing time

    Get PDF
    For critical bond-percolation on high-dimensional torus, this paper proves sharp lower bounds on the size of the largest cluster, removing a logarithmic correction in the lower bound in Heydenreich and van der Hofstad (Comm Math Phys 270(2):335–358, 2007). This improvement finally settles a conjecture by Aizenman (Nuclear Phys B 485(3):551–582, 1997) about the role of boundary conditions in critical high-dimensional percolation, and it is a key step in deriving further properties of critical percolation on the torus. Indeed, a criterion of Nachmias and Peres (Ann Probab 36(4):1267–1286, 2008) implies appropriate bounds on diameter and mixing time of the largest clusters. We further prove that the volume bounds apply also to any finite number of the largest clusters. Finally, we show that any weak limit of the largest connected component is non-degenerate, which can be viewed as a significant sign of critical behavior. The main conclusion of the paper is that the behavior of critical percolation on the high-dimensional torus is the same as for critical Erdos-Rényi random graphs. Keywords: Percolation – Random graph asymptotics – Mean-field behavior – Critical windo

    Celebrity games

    Get PDF
    We introduce Celebrity games, a new model of network creation games. In this model players have weights (W being the sum of all the player's weights) and there is a critical distance ß as well as a link cost a. The cost incurred by a player depends on the cost of establishing links to other players and on the sum of the weights of those players that remain farther than the critical distance. Intuitively, the aim of any player is to be relatively close (at a distance less than ß ) from the rest of players, mainly of those having high weights. The main features of celebrity games are that: computing the best response of a player is NP-hard if ß>1 and polynomial time solvable otherwise; they always have a pure Nash equilibrium; the family of celebrity games having a connected Nash equilibrium is characterized (the so called star celebrity games) and bounds on the diameter of the resulting equilibrium graphs are given; a special case of star celebrity games shares its set of Nash equilibrium profiles with the MaxBD games with uniform bounded distance ß introduced in Bilò et al. [6]. Moreover, we analyze the Price of Anarchy (PoA) and of Stability (PoS) of celebrity games and give several bounds. These are that: for non-star celebrity games PoA=PoS=max{1,W/a}; for star celebrity games PoS=1 and PoA=O(min{n/ß,Wa}) but if the Nash Equilibrium is a tree then the PoA is O(1); finally, when ß=1 the PoA is at most 2. The upper bounds on the PoA are complemented with some lower bounds for ß=2.Peer ReviewedPostprint (author's final draft
    corecore