6,343 research outputs found

    Scalable Kernelization for Maximum Independent Sets

    Get PDF
    The most efficient algorithms for finding maximum independent sets in both theory and practice use reduction rules to obtain a much smaller problem instance called a kernel. The kernel can then be solved quickly using exact or heuristic algorithms---or by repeatedly kernelizing recursively in the branch-and-reduce paradigm. It is of critical importance for these algorithms that kernelization is fast and returns a small kernel. Current algorithms are either slow but produce a small kernel, or fast and give a large kernel. We attempt to accomplish both of these goals simultaneously, by giving an efficient parallel kernelization algorithm based on graph partitioning and parallel bipartite maximum matching. We combine our parallelization techniques with two techniques to accelerate kernelization further: dependency checking that prunes reductions that cannot be applied, and reduction tracking that allows us to stop kernelization when reductions become less fruitful. Our algorithm produces kernels that are orders of magnitude smaller than the fastest kernelization methods, while having a similar execution time. Furthermore, our algorithm is able to compute kernels with size comparable to the smallest known kernels, but up to two orders of magnitude faster than previously possible. Finally, we show that our kernelization algorithm can be used to accelerate existing state-of-the-art heuristic algorithms, allowing us to find larger independent sets faster on large real-world networks and synthetic instances.Comment: Extended versio

    Graph isomorphism completeness for trapezoid graphs

    Full text link
    The complexity of the graph isomorphism problem for trapezoid graphs has been open over a decade. This paper shows that the problem is GI-complete. More precisely, we show that the graph isomorphism problem is GI-complete for comparability graphs of partially ordered sets with interval dimension 2 and height 3. In contrast, the problem is known to be solvable in polynomial time for comparability graphs of partially ordered sets with interval dimension at most 2 and height at most 2.Comment: 4 pages, 3 Postscript figure

    Characterizing Compromise Stability of Games Using Larginal Vectors

    Get PDF
    The core cover of a TU-game is a superset of the core and equals the convex hull of its larginal vectors. A larginal vector corresponds to an order of the players and describes the efficient payoff vector giving the first players in the order their utopia demand as long as it is still possible to assign the remaining players at least their minimum right. A game is called compromise stable if the core is equal to the core cover, i.e. the core is the convex hull of the larginal vectors. In this paper we describe two ways of characterizing sets of larginal vectors that satisfy the condition that if every larginal vector of the set is a core element, then the game is compromise stable. The first characterization of these sets is based on a neighbor argument on orders of the players. The second one uses combinatorial and matching arguments and leads to a complete characterization of these sets. We find characterizing sets of minimum cardinality, a closed formula for the minimum number of orders in these sets, and a partition of the set of all orders in which each element of the partition is a minimum characterizing set.Core;core cover;larginal vectors;matchings

    Long paths and cycles in random subgraphs of graphs with large minimum degree

    Full text link
    For a given finite graph GG of minimum degree at least kk, let GpG_{p} be a random subgraph of GG obtained by taking each edge independently with probability pp. We prove that (i) if pβ‰₯Ο‰/kp \ge \omega/k for a function Ο‰=Ο‰(k)\omega=\omega(k) that tends to infinity as kk does, then GpG_p asymptotically almost surely contains a cycle (and thus a path) of length at least (1βˆ’o(1))k(1-o(1))k, and (ii) if pβ‰₯(1+o(1))ln⁑k/kp \ge (1+o(1))\ln k/k, then GpG_p asymptotically almost surely contains a path of length at least kk. Our theorems extend classical results on paths and cycles in the binomial random graph, obtained by taking GG to be the complete graph on k+1k+1 vertices.Comment: 26 page

    Vanishing ideals over graphs and even cycles

    Full text link
    Let X be an algebraic toric set in a projective space over a finite field. We study the vanishing ideal, I(X), of X and show some useful degree bounds for a minimal set of generators of I(X). We give an explicit description of a set of generators of I(X), when X is the algebraic toric set associated to an even cycle or to a connected bipartite graph with pairwise disjoint even cycles. In this case, a fomula for the regularity of I(X) is given. We show an upper bound for this invariant, when X is associated to a (not necessarily connected) bipartite graph. The upper bound is sharp if the graph is connected. We are able to show a formula for the length of the parameterized linear code associated with any graph, in terms of the number of bipartite and non-bipartite components
    • …
    corecore