2 research outputs found

    Weakening the tight coupling between geometry and simulation in isogeometric analysis: from sub- and super- geometric analysis to Geometry Independent Field approximaTion (GIFT)

    Get PDF
    This paper presents an approach to generalize the concept of isogeometric analysis (IGA) by allowing different spaces for parameterization of the computational domain and for approximation of the solution field. The method inherits the main advantage of isogeometric analysis, i.e. preserves the original, exact CAD geometry (for example, given by NURBS), but allows pairing it with an approximation space which is more suitable/flexible for analysis, for example, T-splines, LR-splines, (truncated) hierarchical B-splines, and PHT-splines. This generalization offers the advantage of adaptive local refinement without the need to re-parameterize the domain, and therefore without weakening the link with the CAD model. We demonstrate the use of the method with different choices of the geometry and field splines, and show that, despite the failure of the standard patch test, the optimum convergence rate is achieved for non-nested spaces

    On degree elevation of T-splines

    No full text
    A degree elevation algorithm is presented for T-splines. We also provide two optimized degree elevation algorithms to restrict the resulting T-splines to be analysis-suitable
    corecore