878 research outputs found

    On Degeneration of Tensors and Algebras

    Get PDF
    An important building block in all current asymptotically fast algorithms for matrix multiplication are tensors with low border rank, that is, tensors whose border rank is equal or very close to their size. To find new asymptotically fast algorithms for matrix multiplication, it seems to be important to understand those tensors whose border rank is as small as possible, so called tensors of minimal border rank. We investigate the connection between degenerations of associative algebras and degenerations of their structure tensors in the sense of Strassen. It allows us to describe an open subset of n*n*n tensors of minimal border rank in terms of smoothability of commutative algebras. We describe the smoothable algebra associated to the Coppersmith-Winograd tensor and prove a lower bound for the border rank of the tensor used in the "easy construction" of Coppersmith and Winograd

    A note on the gap between rank and border rank

    Get PDF
    We study the tensor rank of the tensor corresponding to the algebra of n-variate complex polynomials modulo the dth power of each variable. As a result we find a sequence of tensors with a large gap between rank and border rank, and thus a counterexample to a conjecture of Rhodes. At the same time we obtain a new lower bound on the tensor rank of tensor powers of the generalised W-state tensor. In addition, we exactly determine the tensor rank of the tensor cube of the three-party W-state tensor, thus answering a question of Chen et al.Comment: To appear in Linear Algebra and its Application

    Generalized Matsumoto-Tits sections and quantum quasi-shuffle algebras

    Full text link
    In this paper generalized Matsumoto-Tits sections lifting permutations to the algebra associated to a generalized virtual braid monoid are defined. They are then applied to study the defining relations of the quantum quasi-shuffle algebras via the total symmetrization operator.Comment: 18 page

    Tautological relations in Hodge field theory

    Full text link
    We propose a Hodge field theory construction that captures algebraic properties of the reduction of Zwiebach invariants to Gromov-Witten invariants. It generalizes the Barannikov-Kontsevich construction to the case of higher genera correlators with gravitational descendants. We prove the main theorem stating that algebraically defined Hodge field theory correlators satisfy all tautological relations. From this perspective the statement that Barannikov-Kontsevich construction provides a solution of the WDVV equation looks as the simplest particular case of our theorem. Also it generalizes the particular cases of other low-genera tautological relations proven in our earlier works; we replace the old technical proofs by a novel conceptual proof.Comment: 35 page
    corecore