7 research outputs found

    A Characterization of Reduced Forms of Linear Differential Systems

    Full text link
    A differential system [A]:  Y′=AY[A] : \; Y'=AY, with A∈Mat(n,kˉ)A\in \mathrm{Mat}(n, \bar{k}) is said to be in reduced form if A∈g(kˉ)A\in \mathfrak{g}(\bar{k}) where g\mathfrak{g} is the Lie algebra of the differential Galois group GG of [A][A]. In this article, we give a constructive criterion for a system to be in reduced form. When GG is reductive and unimodular, the system [A][A] is in reduced form if and only if all of its invariants (rational solutions of appropriate symmetric powers) have constant coefficients (instead of rational functions). When GG is non-reductive, we give a similar characterization via the semi-invariants of GG. In the reductive case, we propose a decision procedure for putting the system into reduced form which, in turn, gives a constructive proof of the classical Kolchin-Kovacic reduction theorem.Comment: To appear in : Journal of Pure and Applied Algebr

    Globally nilpotent differential operators and the square Ising model

    Full text link
    We recall various multiple integrals related to the isotropic square Ising model, and corresponding, respectively, to the n-particle contributions of the magnetic susceptibility, to the (lattice) form factors, to the two-point correlation functions and to their lambda-extensions. These integrals are holonomic and even G-functions: they satisfy Fuchsian linear differential equations with polynomial coefficients and have some arithmetic properties. We recall the explicit forms, found in previous work, of these Fuchsian equations. These differential operators are very selected Fuchsian linear differential operators, and their remarkable properties have a deep geometrical origin: they are all globally nilpotent, or, sometimes, even have zero p-curvature. Focusing on the factorised parts of all these operators, we find out that the global nilpotence of the factors corresponds to a set of selected structures of algebraic geometry: elliptic curves, modular curves, and even a remarkable weight-1 modular form emerging in the three-particle contribution χ(3) \chi^{(3)} of the magnetic susceptibility of the square Ising model. In the case where we do not have G-functions, but Hamburger functions (one irregular singularity at 0 or ∞ \infty) that correspond to the confluence of singularities in the scaling limit, the p-curvature is also found to verify new structures associated with simple deformations of the nilpotent property.Comment: 55 page

    Introduction to the Galois Theory of Linear Differential Equations

    Full text link
    This is an expanded version of the 10 lectures given as the 2006 London Mathematical Society Invited Lecture Series at the Heriot-Watt University 31 July - 4 August 2006.Comment: 82 pages; some typos correcte

    On d-solvability for linear differential equations

    Get PDF
    The aim of this paper is to investigate the possibility of solving a linear differential equation of degree n by means of differential equations of degree less than or equal to a fixed d,
    corecore