3 research outputs found

    SO(3)-invariant asymptotic observers for dense depth field estimation based on visual data and known camera motion

    Full text link
    In this paper, we use known camera motion associated to a video sequence of a static scene in order to estimate and incrementally refine the surrounding depth field. We exploit the SO(3)-invariance of brightness and depth fields dynamics to customize standard image processing techniques. Inspired by the Horn-Schunck method, we propose a SO(3)-invariant cost to estimate the depth field. At each time step, this provides a diffusion equation on the unit Riemannian sphere that is numerically solved to obtain a real time depth field estimation of the entire field of view. Two asymptotic observers are derived from the governing equations of dynamics, respectively based on optical flow and depth estimations: implemented on noisy sequences of synthetic images as well as on real data, they perform a more robust and accurate depth estimation. This approach is complementary to most methods employing state observers for range estimation, which uniquely concern single or isolated feature points.Comment: Submitte

    Video Superresolution Reconstruction Using Iterative Back Projection with Critical-Point Filters Based Image Matching

    Get PDF
    To improve the spatial resolution of reconstructed images/videos, this paper proposes a Superresolution (SR) reconstruction algorithm based on iterative back projection. In the proposed algorithm, image matching using critical-point filters (CPF) is employed to improve the accuracy of image registration. First, a sliding window is used to segment the video sequence. CPF based image matching is then performed between frames in the window to obtain pixel-level motion fields. Finally, high-resolution (HR) frames are reconstructed based on the motion fields using iterative back projection (IBP) algorithm. The CPF based registration algorithm can adapt to various types of motions in real video scenes. Experimental results demonstrate that, compared to optical flow based image matching with IBP algorithm, subjective quality improvement and an average PSNR score of 0.53 dB improvement are obtained by the proposed algorithm, when applied to video sequence
    corecore