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To improve the spatial resolution of reconstructed images/videos, this paper proposes a Superresolution (SR) reconstruction
algorithm based on iterative back projection. In the proposed algorithm, image matching using critical-point filters (CPF) is
employed to improve the accuracy of image registration. First, a sliding window is used to segment the video sequence. CPF based
image matching is then performed between frames in the window to obtain pixel-level motion fields. Finally, high-resolution (HR)
frames are reconstructed based on the motion fields using iterative back projection (IBP) algorithm. The CPF based registration
algorithm can adapt to various types of motions in real video scenes. Experimental results demonstrate that, compared to optical
flow based imagematchingwith IBP algorithm, subjective quality improvement and an average PSNR score of 0.53 dB improvement
are obtained by the proposed algorithm, when applied to video sequence.

1. Introduction

Since high-resolution (HR) images/videos are important in
many applications, such as astronomy, military monitor,
medical diagnosis, and remote sensing, superresolution (SR)
reconstruction has a great significance in practice [1]. The
concept of superresolution (SR) reconstruction refers to
reconstructing a high-resolution (HR) image from one or
more low-resolution (LR) images. The purpose of superres-
olution (SR) reconstruction is using digital image processing
algorithm to enhance the spatial resolution by transcending
the limiting factors of optical imaging system [2, 3]. The
innate character of superresolution (SR) reconstruction is
using complementary content of multiple images to extend
high frequency component.

Most superresolution reconstruction methods contain
four steps: registration, map, interpolation, noise, and blur
removal. Registration refers to estimating motion vectors
between two different video frames or images. Then the
motion vectors are used to map the pixels of the input low-
resolution frames to a common high-resolution reference
frame. Interpolation is used to obtain the pixel value of the
superresolution grid, by utilizing the mapped pixels. Finally,

noise and blur removal is applied to eliminate the optical
sensor blur [4].

A variety of iterative superresolution reconstruction algo-
rithms have been proposed. These algorithms can be divided
into two types: frequency domainmethod and spatial domain
method. The frequency domain approach was first proposed
by Tsai and Huang [5]. They formulated a series of equations
which relate high-resolution frames to low-resolution frames,
making use of the shift property of Fourier transform. But
their imagingmodel does not considermotion blur and addi-
tive noise and is only restricted to global translationalmotion.
Interpolation based method, iterative back projection (IBP)
method [1, 6, 7], projection onto convex set (POCS) method
[3, 8], andmaximum a posteriori (MAP) method [9] are four
main spatial domain algorithms for superresolution recon-
struction. Interpolation based method is the simplest spatial
domain algorithm, which uses multiple registered images
to generate the HR image, based on some interpolation
approach, such as nearest-neighbor interpolation, bilinear
interpolation, and cubic spline interpolation [10]. The other
three spatial domain SR algorithms (IBP, POCS, and MAP)
are all based on iterative reconstruction and have better
results than interpolation based method. Another class of
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superresolution reconstruction algorithm is example-based
superresolution algorithm. Freeman et al. [11] presented
the idea of example-based superresolution reconstruction
algorithm. A state-of-the-art algorithm via structure analysis
of patches was proposed by Kim et al. in [12].

The key to the spatial domain algorithms is accurate
image registration. Traditional registration approaches esti-
mate the global translational or rotational motion. But if
more than one type of motion coexists in the scene such as
natural video, global motion estimation does not work. In
video superresolution, image registration algorithms such as
block based matching [13] and optical flow based matching
[14, 15] are often used. But both of these two algorithms have
some drawbacks and are not appropriate in the superreso-
lution reconstruction. Motion vectors cannot be accurately
obtained because of block based matching criterion, and the
performance of optical flow basedmatchingmay be seriously
degraded due to changes of brightness.

In this paper, image matching using multiresolutional
critical-point filters (CPF-IM) [16–18] is proposed to be
applied in the process of superresolution reconstruction.
CPF-IM is suitable for representing both the global and local
motions. Moreover, the influence of brightness change is
small in CPF-IM. In our experiments, pixel-level motion
fields are first obtained by CPF-IM. Then the iterative back
projection (IBP) algorithm is employed to reconstruct the
high-resolution image based on the motion fields. Experi-
mental result shows that the IBP algorithm with CPF-IM
has better performance than bilinear interpolation algorithm,
bicubic interpolation algorithm, and optical flow based image
matching with IBP algorithm.

The rest of this paper is organized as follows. Section 2
briefly introduces the CPF based image matching algorithm.
Section 3 describes the proposed superresolution algorithm
using iterative back projection (IBP) algorithm with CPF-
IM. Section 4 discusses the experimental results. Finally,
Section 5 concludes this paper.

2. Image Matching Using Multiresolutional
Critical-Point Filters

Multiresolutional critical-point filters (CPF) [16–18] provide
a means of matching two images in pixel-level accurately.
Suppose there are two images, a source and a destination.
A set of multiresolution subimages are constructed for both
images. Then, mappings from the source to the destination
subimages are performed at each level from the coarsest
resolution to the finest resolution. The mapping is computed
pixel by pixel constrained by the inherited and the bijectivity
conditions. The mapping with the minimum energy will be
selected as final correspondence.

Supposing the width and the height of the original image
size are 𝑊 and 𝐻, respectively, 𝑛 denotes the hierarchy
level of the finest resolution. A multiresolution hierarchy of
size 𝑊/2

(𝑛−𝑚)
× 𝐻/2

(𝑛−𝑚) images can be computed. There
are four subimages to be calculated, which are formed by
extraction of the minimum, the maximum, and the saddle
points, respectively, at each level of the hierarchy. Let 𝑝

(𝑚,𝑠)

(𝑖,𝑗)

denote the pixel at (𝑖, 𝑗) in the subimage, where 𝑚 is the
level of hierarchy and 𝑠 is the type of subimage. The pixels of
subimages in the hierarchy are recursively calculated from the
pixels of its higher level subimages in the hierarchy as follows:

𝑝
(𝑚,0)

(𝑖,𝑗)
= min (min (𝑝

(𝑚+1,0)

(2𝑖,2𝑗)
, 𝑝
(𝑚+1,0)

(2𝑖,2𝑗+1)
) ,

min (𝑝
(𝑚+1,0)

(2𝑖+1,2𝑗)
, 𝑝
(𝑚+1,0)

(2𝑖+1,2𝑗+1)
)) ,

𝑝
(𝑚,1)

(𝑖,𝑗)
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(𝑚+1,1)

(2𝑖,2𝑗)
, 𝑝
(𝑚+1,1)
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) ,
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(𝑚+1,1)

(2𝑖+1,2𝑗+1)
)) ,

𝑝
(𝑚,2)
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= min (max (𝑝

(𝑚+1,2)

(2𝑖,2𝑗)
, 𝑝
(𝑚+1,2)

(2𝑖,2𝑗+1)
) ,

max (𝑝
(𝑚+1,2)

(2𝑖+1,2𝑗)
, 𝑝
(𝑚+1,2)

(2𝑖+1,2𝑗+1)
)) ,

𝑝
(𝑚,3)

(𝑖,𝑗)
= max (max (𝑝

(𝑚+1,3)

(2𝑖,2𝑗)
, 𝑝
(𝑚+1,3)

(2𝑖,2𝑗+1)
) ,

max (𝑝
(𝑚+1,3)

(2𝑖+1,2𝑗)
, 𝑝
(𝑚+1,3)

(2𝑖+1,2𝑗+1)
)) ,

(1)

where 𝑝
(𝑛,0)

(𝑖,𝑗)
= 𝑝
(𝑛,1)

(𝑖,𝑗)
= 𝑝
(𝑛,2)

(𝑖,𝑗)
= 𝑝
(𝑛,3)

(𝑖,𝑗)
= 𝑝(𝑖,𝑗), which are the

pixels of the original image.
Once the multiresolution hierarchy is constructed, a top

downmethod is utilized to map pixels from the source image
to the destination image.The number of candidate mappings
at each level is constrained by the mapping at its upper level.
A pixel 𝑝 at level 𝑚 of the source image is searching for its
corresponding pixel 𝑞 in the destination image. Suppose the
4 nearest pixels of the pixel 𝑝 are 𝑎, 𝑏, 𝑐, and 𝑑. Their parents
(𝐴, 𝐵, 𝐶, 𝐷) are mapped to 𝐴

󸀠, 𝐵
󸀠, 𝐶
󸀠, 𝐷
󸀠 at level 𝑚 − 1. For

each of the parents, one child pixel is selected. The four chil-
dren pixels define an inherited quadrilateral 𝑎

󸀠
𝑏
󸀠
𝑐
󸀠
𝑑
󸀠, inside

whichwe search the pixel 𝑞with aminimummapping energy.
Let 𝑝

(𝑚,𝑠)
(𝑖, 𝑗) be the pixel to map in source image at

location (𝑖, 𝑗) and 𝑞
(𝑚,𝑠)

(𝑘, 𝑙) the pixel to test in destination
image at location (𝑘, 𝑙) = 𝑓

(𝑚,𝑠)
(𝑖, 𝑗). The mapping energy

𝐸
(𝑚,𝑠)

(𝑖, 𝑗) consists of 𝐺
(𝑚,𝑠)

(𝑖, 𝑗) and 𝐻
(𝑚,𝑠)

(𝑖, 𝑗), defined as

𝐸
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(𝑚,𝑠)
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, (2)

where 𝜆 ≥ 0 is a real number. 𝐺
(𝑚,𝑠)

(𝑖, 𝑗) denotes the
intensity differences between the source image pixel and its
corresponding pixel in the destination image. Consider

𝐺
(𝑚,𝑠)

(𝑖, 𝑗) =
󵄨󵄨󵄨󵄨󵄨
𝐼 (𝑝
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(𝑖, 𝑗)) − 𝐼 (𝑞
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(𝑘, 𝑙))
󵄨󵄨󵄨󵄨󵄨

2
, (3)

where the function 𝐼(⋅) denotes the intensity of image pixel.
And 𝐻

(𝑚,𝑠)
(𝑖, 𝑗) is the cost related to the locations of pixel.

Consider

𝐻
(𝑚,𝑠)

(𝑖,𝑗)
= 𝜂𝐻
(𝑚,𝑠)

0(𝑖,𝑗)
+ 𝐻
(𝑚,𝑠)

1(𝑖,𝑗)
, (4)
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where 𝜂 ≥ 0 is a real number. Consider
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−1
.

(5)

𝐻0 is determined by the differences between (𝑖, 𝑗) and 𝑓(𝑖, 𝑗)

to prevent a pixel being mapped to a pixel too far away. 𝐻1

is determined by the distance between the displacement of
𝑝
(𝑚,𝑠)

(𝑖, 𝑗) and the displacement of its neighbors. This energy
is used to smooth the mapping.

In the mapping procedure, the energy of the candidate
pixels satisfying the above conditions will be computed and
compared. Then the pixel with the minimum energy will be
determined as the final corresponding pixel.

The advantage of integrating CPF based image matching
into video image superresolution is that pixel-level motion
fields can be accurately obtained. Shifts usually vary across
small regions between video frames; therefore, block based
image matching is not accurate enough. Moreover, optical
flow based image matching is seriously affected by brightness
change. In summary, CPF based image matching can over-
come the defects of traditional image matching algorithms
and is applicable to global motion and local motion model.
In the process of image matching, one of the low-resolution
images is selected as the reference image. CPF based image
matching is performed between the reference image and the
other low-resolution images to obtain motion fields.

3. Integrate CPF Based Image Matching into
Video Image Superresolution

This section introduces how to integrate CPF-IM into video
image superresolution. A new framework of iterative back
projection algorithm is proposed to reconstruct the high-
resolution video image.

3.1. Video Superresolution Reconstruction Model. The acqui-
sition of low-resolution images is shown in Figure 1. The
relation between the 𝑘th observation image 𝑔𝑘 and the
original high-resolution image 𝑓 can be expressed as

𝑔𝑘 = 𝑉𝑘𝑈𝑘𝑊𝑘𝑓 + 𝑛𝑘, (6)

where 𝑊𝑘 represents the affine operation matrix for 𝑔𝑘, 𝑈𝑘

denotes the blur operation caused by point spread function
(PSF), and 𝑉𝑘 is the downsampling matrix.

The point spread function (PSF) and the downsampling
operator used to be the same in the process of image
acquisition in an imaging system. Thus, the blur operator 𝑈𝑘

and the downsampling operator 𝑉𝑘 can be assumed to be

Affine PSF blur
transform 

f

Wk Uk Vk

gk
+nkDownsampling

Figure 1: Low-resolution image acquisition model.
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Figure 2: Video superresolution reconstruction model.

constants in a sequence of images acquisition. So the imaging
model (6) can be transformed to

𝑔𝑘 = 𝑈𝑉𝑊𝑘𝑓 + 𝑛𝑘. (7)

The purpose of superresolution is to obtain the optimal
estimation of the high-resolution image 𝑓 from a series
of low-resolution images 𝑔𝑘. This is the inverse process of
imaging as shown in (7).

The key to superresolution reconstruction algorithms is
accurate image registration, which is a difficult problem,
since motion between video frames is complex and accurate
motion field is difficult to obtain. Most traditional superreso-
lution reconstruction algorithms are proposed for image
superresolution rather than video superresolution, as motion
field between images is much easier to estimate. The algo-
rithm proposed in this paper is suitable for video image
superresolution, and the experimental results will verify its
effectiveness.

For a video sequence, the motion vectors between two
adjacent frames are relatively small. So we select the succes-
sive frames as the low-resolution images. A high-resolution
frame can be reconstructed from the adjacent frames through
(7). A video superresolution reconstruction model based on
sliding window [19] is depicted in Figure 2.

As shown in Figure 2, in video superresolution recon-
struction, the sliding window is moved forward to produce
successive high-resolution frames in the output sequence.
In order to ensure the accuracy of registration, the middle
frame of the slidingwindow is selected as the reference frame.
Image matching is performed between the reference frame
and other frames in the sliding window to obtain the motion
fields. Then the high-resolution frames are reconstructed
based on these motion fields. If we assume that the total
length of video is 𝑁 and 𝑃 is the length of sliding window,
(𝑁+𝑃−1) high-resolution frames can be reconstructed from
the low-resolution video sequence.

3.2. Original Iterative Back Projection Algorithm. Iterative
back projection [1, 6, 7] starts with an initial estimation of
high-resolution image. The initial high-resolution image is
generated by interpolating an input low-resolution image.
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Figure 3: Flow of the original IBP algorithm.

Then, a series of simulated low-resolution images are gen-
erated from the reconstructed superresolution image by the
image acquisition model. If the simulated low-resolution
images are consistent with the corresponding input low-
resolution images, the reconstructed superresolution image is
identical with the original high-resolution image. Otherwise,
the differences between the simulated low-resolution images
and the input low-resolution images will be projected to the
reconstructed superresolution image.This process is repeated
iteratively until the differences between the simulated low-
resolution images and the input low-resolution images are
small enough. Iterative back projection algorithm can be
formulated as

𝑓
𝑛+1

𝐻 = 𝑓
𝑛

𝐻 − 𝜆

𝑃

∑

𝑖=1

𝐻
BP
𝑖 (𝑔
𝑛

iL − 𝑔iL) ,

𝑔
𝑛

iL = 𝑉𝑈𝑊𝑘𝑓
𝑛

𝐻,

(8)

where 𝑛 represents the iteration number, 𝑓
𝑛+1
𝐻 is the recon-

structed superresolution image in the (𝑛 + 1)th iteration,
and 𝑓

𝑛
𝐻 is the reconstructed superresolution image in the 𝑛th

iteration. 𝜆 is a constant value controlling the convergence
speed, which is set as 0.1 for every iterative process.The length
of sliding window is defined as 𝑃, which also represents the
number of input low-resolution images. 𝐻

BP
𝑖 is the 𝑖th back

projection operation, which is the same projection operator.
𝑔
𝑛
iL denotes the simulated low-resolution image defined by

the image acquisition model, and 𝑔iL denotes the input low-
resolution image. 𝑊𝑘 represents the affine operation matrix
for 𝑔
𝑛
iL, 𝑈 denotes the blur operation caused by point spread

function (PSF), and 𝑉 is the downsampling matrix.
The flow of the original iterative back projection algo-

rithm is shown in Figure 3, and deblur block denotes the
inverse matrix of 𝑈.

3.3. Proposed Iterative Back Projection Algorithm Combined
with CPF Based Image Matching. In traditional image super-
resolution, global motion estimation is usually adopted as

image matching algorithm, and global motion parameters
are obtained between low-resolution images. In this case,
the motion parameters between high-resolution images can
be directly obtained by transforming the motion parameters
between low-resolution images. And thus the affine trans-
formation is easily implemented at high resolution. In this
paper, pixel-level motion fields are obtained by CPF based
image matching. And the affine transformation should be
performed pixel by pixel, which is difficult to implement.
Moreover, the affine transformation between the input low-
resolution images is already included in the process of CPF
matching. Therefore, the affine transformation in the image
acquisition model can be replaced by that in CPF matching,
and a new framework of iterative back projection algorithm
combined with CPF-IM (IBP-CPF-IM) is proposed.

The proposed IBP-CPF-IM algorithm starts with tak-
ing an input low-resolution image as the reference image.
Then, CPF-IM is performed between the reference image
and the other nonreference input low-resolution images to
obtain pixel-level motion fields. And a series of simulated
reference images 𝑥iL are produced from these nonreference
low-resolution images using the motion fields. Each input
low-resolution image corresponds to a simulated reference
image. Next, an initial reconstructed superresolution image
𝑓
0
𝐻 is generated by interpolating the reference low-resolution

image. Generally, better initial estimation directly leads to
better quality of the final reconstructed image. In addition,
high quality of the initial estimation image can speed up
the convergence of the iteration algorithm. Finally, simulated
low-resolution image 𝑥

𝑛
iL is generated through downsampling

the reconstructed superresolution image. If the simulated
low-resolution image 𝑥

𝑛
iL is consistent with the simulated ref-

erence images 𝑥iL, the reconstructed superresolution image is
identical with the original high-resolution image. Otherwise,
the differences between the simulated low-resolution image
and the simulated reference images will be projected to the
reconstructed superresolution image.This process is repeated
iteratively until the differences between the simulated low-
resolution image and the simulated reference images are
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small enough. The proposed IBP-CPF-IM algorithm can be
formulated as

𝑓
𝑛+1

𝐻 = 𝑓
𝑛

𝐻 − 𝜆

𝑃

∑

𝑖=1

𝐻
BP
𝑖 (𝑥
𝑛

iL − 𝑥iL) ,

𝑥iL = CPF (𝑔iL) ,

𝑥
𝑛

iL = 𝑉𝑈𝑓
𝑛

𝐻,

(9)

where 𝑥iL represents the simulated reference image, 𝑥
𝑛
iL is the

simulated low-resolution image through downsampling the
superresolution image, and CPF(⋅) represents the operation
which transforms input low-resolution image to simulated
reference image.

In the original IBP algorithm, affine transformation is
implemented between high-resolution images using global
motion parameters. However, the affine transformation in the
proposed algorithm is replaced by CPF matching between
low-resolution images. And the convergence of the proposed
algorithm is going to speed up.

The relative error used to control when to stop the
iterative process is defined as follows:

error =

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑛+1
𝐻 − 𝑓

𝑛
𝐻

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑓
𝑛
𝐻

󵄩󵄩󵄩󵄩

, (10)

where ‖ ⋅ ‖ represents 𝐿2 norm. Iteration stops when error is
smaller than a threshold (set as 10

−4 in our experiments) or
the iteration number reaches themaximum value which is set
as 100.

The processes of IBP-CPF-IM algorithm for video super-
resolution are presented as follows.

Step 1. Move the sliding window and take five video frames
as the input low-resolution frames. In general, when the
distance between the middle frame and the matching frame
becomes larger, their differences also become larger. In this

case, the accuracy of CPF matching will decrease, and subtle
quality improvement of the generated frame can be obtained.
Nevertheless, the computational complexity will increase
greatly. To get a tradeoff between computational complexity
and image quality, the length of sliding window 𝑃 is set as five
empirically.

Step 2. The middle frame of the sliding window is taken as
the reference frame. CPF based image matching is conducted
between the reference frame and the other frames in the
sliding window. Four motion fields are obtained through this
process. And four simulated reference frames are generated
using the motion fields.

Step 3. The reference frame is interpolated to obtain the
initial reconstructed superresolution frame.

Step 4. The simulated low-resolution frame is obtained
through downsampling the reconstructed superresolution
frame.

Step 5. If the simulated low-resolution frame is not the same
as the simulated reference frame, differences between them
are projected to the reconstructed superresolution frame and
we return to Step 4. If the differences between the simulated
low-resolution frame and the simulated reference frame are
small enough, the reconstructed superresolution frame is the
desired frame.

The flow of proposed iterative back projection algorithm
is shown in Figure 4, and deblur block denotes the inverse
matrix of 𝑈.

4. Experiment Results

4.1. Experiments on Static Image. To evaluate the perfor-
mance of the proposed algorithm, standard images are tested.
The size of the input high-resolution image is 256 × 256.
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(a) Original image (b) Bilinear interpolated image (c) Bicubic interpolated image

(d) IBP-FR image (e) IBP-OL2004 (f) IBP-OL2010

(g) IBP-CPF-IM

Figure 5: Comparison of Peppers.

The low-resolution images are obtained by the image acqui-
sition model as shown in Figure 1.The high-resolution image
is first performed by affine transform which contains various
unique vertical shifts, horizontal shifts, and rotations. Then,
these affined images are blurred through low pass filter and
downsampled by a factor of 2 to generate low-resolution
images. The number of input simulated low-resolution
images is 4. In this part, the performance of the proposed
algorithm is compared with bilinear interpolation, bicubic
interpolation, IBP with frequency domain registration (IBP-
FR) [20], and IBP with optical flow based image matching
(IBP-OL) algorithms (optical flow based image matching
algorithms used in the experiments are proposed in [14] and
[15], resp.). CPF based image matching is applied to obtain
motion fields between images. A stable result about each test

image in the experiments is obtained when iterative number
is around 15.

Figures 5(a) and 6(a) show the original high-resolution
images of Peppers and Lena. One of the generated low-
resolution images is selected as the reference image about
each test image. Figures 5(b) and 6(b) are the interpolated
images from the reference image using bilinear algorithm,
while Figures 5(c) and 6(c) are the interpolated images using
bicubic algorithm. Superresolution images reconstructed
using iterative back projection algorithm based on frequency
domain registration [20] are shown in Figures 5(d) and 6(d).
Figures 5(e), 6(e), 5(f), and 6(f) are images reconstructed
using iterative back projection algorithm with optical flow
based imagematching [14, 15]. IBP-OL2004 represents optical
flow based image matching algorithm proposed in [14].
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(a) Original image (b) Bilinear interpolated image (c) Bicubic interpolated image

(d) IBP-FR image (e) IBP-OL 2004 (f) IBP-OL2010

(g) CPF-IM

Figure 6: Comparison of Lena.

IBP-OL2004 denotes the used optical flow based image
matching algorithm proposed in [15]. And the images recon-
structed by the proposed algorithm are shown in Figures
5(g) and 6(g). Ringing artifacts of Figures 5(g) and 6(g) are
effectively reduced compared with Figures 5(d) and 6(d).
Moreover, the edges of Figures 5(g) and 6(g) are handled
better than those in Figures 5(e), 5(f), 6(e), and 6(f).

In order to evaluate the quality of the reconstructed
image objectively, PSNR is calculated between the original
high-resolution image and the reconstructed superresolu-
tion image. Table 1 gives the performance of the proposed
algorithm and the compared algorithms. It is apparent that

the proposed algorithmachieves an improvement of objective
quality.

4.2. Experiments on Video. To verify the effect of the pro-
posed algorithm on video image superresolution reconstruc-
tion, a series of standard video sequences are tested. The
tested videos are in format of YUV. Proposed algorithm is
applied to each component of video. In order to calculate
PSNR performance of reconstructed video, low-resolution
videos are obtained through downsampling high-resolution
videos. And the PSNR performance of the experiment results
is calculated based on 𝑌 component. For each sequence, only
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Table 1: PSNR of experimental image shown in Figures 3 and 4 and the other experimental images.

Bilinear Bicubic IBP-FR IBP-OL2004 IBP-OL2010 IBP-CPF-IM
Barbara 26.90 dB 26.96 dB 25.89 dB 26.01 dB 26.51 dB 28.37 dB
Lena 26.81 dB 26.89 dB 25.32 dB 25.08 dB 26.17 dB 28.92 dB
Peppers 26.74 dB 26.88 dB 26.80 dB 26.79 dB 27.37 dB 29.29 dB

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7: Comparison of hall: (a) original image, (b) the enlarged portion of (a), (c) bilinear interpolated image, (d) the enlarged portion of
(c), (e) bicubic interpolated image, (f) the enlarged portion of (e), (g) IBP-OL2004, (h) the enlarged portion of (g), (i) IBP-OL2010, (j) the
enlarged portion of (i), (k) IBP-CPF-IM, and (l) the enlarged portion of (k).

the first 100 frames are used and the size of the video image is
176 × 144. In this experiment, the scheme of sliding window
(Figure 2) is adopted. The pixel-level motion fields between
the reference frame and the other frames are estimated by
CPF-IM. Taking the scheme of sliding window into consider-
ation, the length of the output reconstructed frames is 96.The
proposed algorithm is compared with bilinear interpolated
algorithm, bicubic interpolated algorithm, and IBP with
optical flow based image matching algorithm (optical flow
based image matching algorithms used in the experiment
are proposed in [14] and [15], resp.). Thus the motion mode
which frequency domain registration algorithm requests is
only global translation or rotation. iterative back projection
algorithm based on frequency domain registration is not
suitable for video superresolution. For bilinear and bicubic
interpolation, the output reconstructed frame is acquired by
interpolating the reference frame. For each frame in the video,

a stable result is obtained before iterative number reaches the
maximumvalue.ThePSNRperformances of these algorithms
are listed in Table 2. Compared to bicubic interpolation, IBP-
CPF-IM achieves a linear average PSNR gain of 1.27 dB.These
demonstrate that the amount of reconstruction information
which we get from more than one frame is much more
than that from only one frame, and the objective quality
of the reconstructed frame by superresolution algorithm
is generally higher than the reconstructed frame by inter-
polation. When compared with the IBP-OL2004 and IBP-
OL2010 algorithms, the PSNR gain of IBP-CPF-IM is about
0.52 dB and 0.60 dB.The reason is that optical flow is sensitive
to brightness change, which frequently occurs on video
sequence. And the motion vectors cannot be accurately
obtained by using optical flow based image matching.

Figures 7 and 8 show examples of the experimental results
about hall and container sequences. The original images are
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Table 2: PSNR of experimental video frames shown in Figures 5 and 6 and the other experimental video frames.

Bilinear Bicubic IBP-OL2004 IBP-OL2010 IBP-CPF-IM
Coastguard 26.26 dB 26.34 dB 26.81 dB 27.14 dB 27.50 dB
Container 24.20 dB 24.33 dB 25.50 dB 25.50 dB 25.50 dB
Hall 25.61 dB 25.80 dB 26.83 dB 26.67 dB 27.12 dB
Foreman 27.71 dB 27.76 dB 28.14 dB 28.08 dB 28.95 dB
Mother-daughter 31.85 dB 31.92 dB 33.13 dB 32.85 dB 33.45 dB
Tempete 24.26 dB 24.38 dB 24.56 dB 24.28 dB 25.61 dB
Average 26.65 dB 26.76 dB 27.50 dB 27.42 dB 28.02 dB

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8: Comparison of container: (a) original image, (b) the enlarged portion of (a), (c) bilinear interpolated image, (d) the enlarged portion
of (c), (e) bicubic interpolated image, (f) the enlarged portion of (e), (g) IBP-OL2004, (h) the enlarged portion of (g), (i) IBP-OL2010, (j) the
enlarged portion of (i), (k) IBP-CPF-IM, and (l) the enlarged portion of (k).

shown in (a). The reconstructed images by bilinear, bicubic
IBP-OL2004, IBP-OL2010, and the proposed IBP-CPF-IM
are shown in (c), (e), (g), (i), and (k), respectively. In order to
show details of the reconstructed images, a portion of these
reconstructed images is enlarged with a scale factor of 1 : 4,
as shown in (d), (f), (h), (j), and (l), respectively. Compared
to bicubic interpolation, the enlarged portion of Figure 7(l)
reconstructed by IBP-CPF-IM is clearer. When there is a
large motion or the change is abrupt between consecutive
frames, the ghosting effect is produced by IBP-OL as shown
in Figure 7(h), while IBP-CPF-IM can reduce this defect, as
shown in Figure 7(j).

5. Conclusion

The performance of superresolution reconstruction algo-
rithm depends largely on the accuracy of image registra-
tion. Traditional registration approaches for superresolution
reconstruction algorithm usually demand that the motion
between images is global translation or rotation. For video
frames, this does not hold. Moreover, block based matching
and optical flow based matching algorithms have their own
limitations. To improve the accuracy of image registration,
this paper introduces multiresolutional critical-point filters
based image matching algorithm (CPF-IM) to image/video
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superresolution. The elastic motion model in CPF-IM can
adapt to various nontranslational motions, such as zoom
and rotation. The combination of IBP and CPF-IM, which is
called IBP-CPF-IM, is applied to image and video superreso-
lution. Experimental results show that the proposed approach
achieves better performance in objective and subjective
quality for both image and video frames, when compared
with bilinear and bicubic interpolation algorithms and IBP-
FR and IBP-OL algorithm. CPF-IM can also be integrated
into other superresolution reconstruction algorithms, such
as projections onto convex sets (POCS) algorithm and maxi-
mum a posteriori (MAP) algorithm.
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