12,835 research outputs found

    A new bound of the ℒ2[0, T]-induced norm and applications to model reduction

    Get PDF
    We present a simple bound on the finite horizon ℒ2/[0, T]-induced norm of a linear time-invariant (LTI), not necessarily stable system which can be efficiently computed by calculating the ℋ∞ norm of a shifted version of the original operator. As an application, we show how to use this bound to perform model reduction of unstable systems over a finite horizon. The technique is illustrated with a non-trivial physical example relevant to the appearance of time-irreversible phenomena in statistical physics

    Robust nonlinear control of vectored thrust aircraft

    Get PDF
    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations

    Robust control of ill-conditioned plants: high-purity distillation

    Get PDF
    Using a high-purity distillation column as an example, the physical reason for the poor conditioning and its implications on control system design and performance are explained. It is shown that an acceptable performance/robustness tradeoff cannot be obtained by simple loop-shaping techniques (using singular values) and that a good understanding of the model uncertainty is essential for robust control system design. Physically motivated uncertainty descriptions (actuator uncertainties) are translated into the H∞/structured singular value framework, which is demonstrated to be a powerful tool to analyze and understand the complex phenomena

    Large-Scale Optical Neural Networks based on Photoelectric Multiplication

    Full text link
    Recent success in deep neural networks has generated strong interest in hardware accelerators to improve speed and energy consumption. This paper presents a new type of photonic accelerator based on coherent detection that is scalable to large (N≳106N \gtrsim 10^6) networks and can be operated at high (GHz) speeds and very low (sub-aJ) energies per multiply-and-accumulate (MAC), using the massive spatial multiplexing enabled by standard free-space optical components. In contrast to previous approaches, both weights and inputs are optically encoded so that the network can be reprogrammed and trained on the fly. Simulations of the network using models for digit- and image-classification reveal a "standard quantum limit" for optical neural networks, set by photodetector shot noise. This bound, which can be as low as 50 zJ/MAC, suggests performance below the thermodynamic (Landauer) limit for digital irreversible computation is theoretically possible in this device. The proposed accelerator can implement both fully-connected and convolutional networks. We also present a scheme for back-propagation and training that can be performed in the same hardware. This architecture will enable a new class of ultra-low-energy processors for deep learning.Comment: Text: 10 pages, 5 figures, 1 table. Supplementary: 8 pages, 5, figures, 2 table

    Regularized Nonlinear Acceleration

    Get PDF
    We describe a convergence acceleration technique for unconstrained optimization problems. Our scheme computes estimates of the optimum from a nonlinear average of the iterates produced by any optimization method. The weights in this average are computed via a simple linear system, whose solution can be updated online. This acceleration scheme runs in parallel to the base algorithm, providing improved estimates of the solution on the fly, while the original optimization method is running. Numerical experiments are detailed on classical classification problems
    • 

    corecore