8 research outputs found

    Compositional Semantics for Probabilistic Programs with Exact Conditioning

    Full text link
    We define a probabilistic programming language for Gaussian random variables with a first-class exact conditioning construct. We give operational, denotational and equational semantics for this language, establishing convenient properties like exchangeability of conditions. Conditioning on equality of continuous random variables is nontrivial, as the exact observation may have probability zero; this is Borel's paradox. Using categorical formulations of conditional probability, we show that the good properties of our language are not particular to Gaussians, but can be derived from universal properties, thus generalizing to wider settings. We define the Cond construction, which internalizes conditioning as a morphism, providing general compositional semantics for probabilistic programming with exact conditioning.Comment: 16 pages, 5 figure

    Computable Measure Theory and Algorithmic Randomness

    Get PDF
    International audienceWe provide a survey of recent results in computable measure and probability theory, from both the perspectives of computable analysis and algorithmic randomness, and discuss the relations between them

    Blang: Bayesian declarative modelling of general data structures and inference via algorithms based on distribution continua

    Get PDF
    Consider a Bayesian inference problem where a variable of interest does not take values in a Euclidean space. These "non-standard" data structures are in reality fairly common. They are frequently used in problems involving latent discrete factor models, networks, and domain specific problems such as sequence alignments and reconstructions, pedigrees, and phylogenies. In principle, Bayesian inference should be particularly well-suited in such scenarios, as the Bayesian paradigm provides a principled way to obtain confidence assessment for random variables of any type. However, much of the recent work on making Bayesian analysis more accessible and computationally efficient has focused on inference in Euclidean spaces. In this paper, we introduce Blang, a domain specific language and library aimed at bridging this gap. Blang allows users to perform Bayesian analysis on arbitrary data types while using a declarative syntax similar to BUGS. Blang is augmented with intuitive language additions to create data types of the user's choosing. To perform inference at scale on such arbitrary state spaces, Blang leverages recent advances in sequential Monte Carlo and non-reversible Markov chain Monte Carlo methods

    On computability and disintegration

    No full text
    corecore