735 research outputs found

    Flow Level QoE of Video Streaming in Wireless Networks

    Full text link
    The Quality of Experience (QoE) of streaming service is often degraded by frequent playback interruptions. To mitigate the interruptions, the media player prefetches streaming contents before starting playback, at a cost of delay. We study the QoE of streaming from the perspective of flow dynamics. First, a framework is developed for QoE when streaming users join the network randomly and leave after downloading completion. We compute the distribution of prefetching delay using partial differential equations (PDEs), and the probability generating function of playout buffer starvations using ordinary differential equations (ODEs) for CBR streaming. Second, we extend our framework to characterize the throughput variation caused by opportunistic scheduling at the base station, and the playback variation of VBR streaming. Our study reveals that the flow dynamics is the fundamental reason of playback starvation. The QoE of streaming service is dominated by the first moments such as the average throughput of opportunistic scheduling and the mean playback rate. While the variances of throughput and playback rate have very limited impact on starvation behavior.Comment: 14 page

    On the Relay-Fallback Tradeoff in Millimeter Wave Wireless System

    Full text link
    Millimeter wave (mmWave) communications systems are promising candidate to support extremely high data rate services in future wireless networks. MmWave communications exhibit high penetration loss (blockage) and require directional transmissions to compensate for severe channel attenuations and for high noise powers. When blockage occurs, there are at least two simple prominent options: 1) switching to the conventional microwave frequencies (fallback option) and 2) using an alternative non-blocked path (relay option). However, currently it is not clear under which conditions and network parameters one option is better than the other. To investigate the performance of the two options, this paper proposes a novel blockage model that allows deriving maximum achievable throughput and delay performance of both options. A simple criterion to decide which option should be taken under which network condition is provided. By a comprehensive performance analysis, it is shown that the right option depends on the payload size, beam training overhead, and blockage probability. For a network with light traffic and low probability of blockage in the direct link, the fallback option is throughput- and delay-optimal. For a network with heavy traffic demands and semi-static topology (low beam-training overhead), the relay option is preferable.Comment: 6 pages, 5 figures, accepted in IEEE INFOCOM mmNet Worksho

    Distributed Detection and Estimation in Wireless Sensor Networks

    Full text link
    In this article we consider the problems of distributed detection and estimation in wireless sensor networks. In the first part, we provide a general framework aimed to show how an efficient design of a sensor network requires a joint organization of in-network processing and communication. Then, we recall the basic features of consensus algorithm, which is a basic tool to reach globally optimal decisions through a distributed approach. The main part of the paper starts addressing the distributed estimation problem. We show first an entirely decentralized approach, where observations and estimations are performed without the intervention of a fusion center. Then, we consider the case where the estimation is performed at a fusion center, showing how to allocate quantization bits and transmit powers in the links between the nodes and the fusion center, in order to accommodate the requirement on the maximum estimation variance, under a constraint on the global transmit power. We extend the approach to the detection problem. Also in this case, we consider the distributed approach, where every node can achieve a globally optimal decision, and the case where the decision is taken at a central node. In the latter case, we show how to allocate coding bits and transmit power in order to maximize the detection probability, under constraints on the false alarm rate and the global transmit power. Then, we generalize consensus algorithms illustrating a distributed procedure that converges to the projection of the observation vector onto a signal subspace. We then address the issue of energy consumption in sensor networks, thus showing how to optimize the network topology in order to minimize the energy necessary to achieve a global consensus. Finally, we address the problem of matching the topology of the network to the graph describing the statistical dependencies among the observed variables.Comment: 92 pages, 24 figures. To appear in E-Reference Signal Processing, R. Chellapa and S. Theodoridis, Eds., Elsevier, 201

    Modelling and analysis of asynchronous and synchronous torques in split-phase induction machines

    Get PDF
    In this thesis, the nature of asynchronous and synchronous torques in a split-phase induction machine is investigated and quantified. The equivalent circuit for this type of machine is derived using the rotating field theory. It is extended to include harmonic effects. Using this model, winding harmonics and permeance harmonics may be calculated independently of each other so that the model can be used to analyse asynchronous torques from winding harmonics as well as synchronous torques from permeance harmonics. These are calculated separately. The asynchronous torques appear as perturbations in the steady-state torque-speed curve while the synchronous torques only appear at specific speeds. The synchronous torques are superimposed onto the torque-speed curves to model both effects together. The model predictions are compared against test results using purpose-built experimental machines together with production machines. These have varying rotor bar number and skew. Different methods are used to assess the synchronous torques. It is found that measuring synchronous locking torque is not a straightforward matter; however, reasonable agreement is found between calculation and measurement. The work highlights the need for the correct choice of stator and rotor slot numbers together with the effect skew has on reducing the synchronous and asynchronous locking torques

    Resource allocation for layered broadcast over relay-assisted channels

    Get PDF
    The topic of this thesis is on the application of “multilayer transmission” using the broadcast approach on a “relay-assisted” channel. Unlike single layer transmission, where all transmitted information bits have the same protection level by the channel coding scheme, multilayer transmission schemes combine successive refinement layered source coding with ordered protection levels of the source layers. Consequently, the receiver will be able to decode “some” information when the channel is faded and “all” information when the channel is good. The multilayer transmission schemes have gained a lot of interest in the information theory and the communication theory literature, where most researchers are interested in the “broadcast approach” since it is the optimal transmission strategy. In this thesis, we consider a fading relay channel where the source uses layered source coding with successive refinement. The source layers are transmitted using superposition coding at the source with optimal resource allocation. The destination applies successive interference cancellation after optimally combining the direct and relayed signals. The resource allocation for the layers is subject to optimization in order to maximize the expected user satisfaction that is usually defined by a differentiable concave increasing utility function of the total decoded rate at the destination. As special cases, we consider two utility functions; namely, the expected total decoded rate at the receiver and the expected rate distortion of a Gaussian source. We also assume that only the channel statistics are known at the receiver. The relay is half-duplex and applies different relaying strategies, and we have investigated the Amplify-and-Forward, and Decode-and-Forward strategies in particular. First, we consider the case of Decode-and-Forward relays where we consider two layers only with predetermined rates for simplicity, and we solve the problem of optimal power allocation among the two layers at the source and the relay using random search methods. After that, we solve the optimal power allocation problem for any number of layers with fixed rates over an Amplify-and-Forward relays. An approximation for the end-to-end channel quality is presented in terms of the statistics of the three links of the channel model. Furthermore, we obtain that for some conditions, it is optimal to send only one layer. Finally, we solve the joint optimal power and rate allocation problem for any number of layers over an Amplify-and-Forward relays. We also consider the theoretical case of infinite number of layers representing an upper bound for the performance. Moreover, we show that with a small number of layers, we can approach the performance upper bound. We provide many numerical examples for the three cases above to show the prospected gains of using the relays on the expected utility for different channel conditions

    Analytic Performance Model for State-Based MAC Layer Cooperative Retransmission Protocols

    Get PDF
    © 2015 IEEE. Cooperative retransmission can significantly improve link reliability over lossy and time-varying wireless links. However, comparing retransmission protocols is challenging, and generally requires simplistic assumptions specific to each protocol. In this paper, we develop a general model to evaluate cooperative retransmission protocols with distributed, slot-based contention algorithms. Specifically, we propose to calculate the relay time-out probabilities at a MAC time-slot scale, formulate retransmission outcomes as functions of the time-out probabilities, and derive the probability of a retransmission process for every data frame. We also propose a Markov extension of our model to characterise the dependency between retransmissions of multiple frames. This enables our model to analyse continuous retransmissions of successive frames. Validated by QualNet simulations, our model can analytically predict the probabilities of cooperative retransmissions with an accuracy of ± 1%. As a result, direct comparisons between cooperative retransmission protocols become tangible, without implementing the full protocol in a state-based simulator
    corecore