1,664 research outputs found

    Cubic graphs with large circumference deficit

    Full text link
    The circumference c(G)c(G) of a graph GG is the length of a longest cycle. By exploiting our recent results on resistance of snarks, we construct infinite classes of cyclically 44-, 55- and 66-edge-connected cubic graphs with circumference ratio c(G)/V(G)c(G)/|V(G)| bounded from above by 0.8760.876, 0.9600.960 and 0.9900.990, respectively. In contrast, the dominating cycle conjecture implies that the circumference ratio of a cyclically 44-edge-connected cubic graph is at least 0.750.75. In addition, we construct snarks with large girth and large circumference deficit, solving Problem 1 proposed in [J. H\"agglund and K. Markstr\"om, On stable cycles and cycle double covers of graphs with large circumference, Disc. Math. 312 (2012), 2540--2544]

    Box representations of embedded graphs

    Full text link
    A dd-box is the cartesian product of dd intervals of R\mathbb{R} and a dd-box representation of a graph GG is a representation of GG as the intersection graph of a set of dd-boxes in Rd\mathbb{R}^d. It was proved by Thomassen in 1986 that every planar graph has a 3-box representation. In this paper we prove that every graph embedded in a fixed orientable surface, without short non-contractible cycles, has a 5-box representation. This directly implies that there is a function ff, such that in every graph of genus gg, a set of at most f(g)f(g) vertices can be removed so that the resulting graph has a 5-box representation. We show that such a function ff can be made linear in gg. Finally, we prove that for any proper minor-closed class F\mathcal{F}, there is a constant c(F)c(\mathcal{F}) such that every graph of F\mathcal{F} without cycles of length less than c(F)c(\mathcal{F}) has a 3-box representation, which is best possible.Comment: 16 pages, 6 figures - revised versio

    Three-coloring triangle-free graphs on surfaces II. 4-critical graphs in a disk

    Get PDF
    Let G be a plane graph of girth at least five. We show that if there exists a 3-coloring phi of a cycle C of G that does not extend to a 3-coloring of G, then G has a subgraph H on O(|C|) vertices that also has no 3-coloring extending phi. This is asymptotically best possible and improves a previous bound of Thomassen. In the next paper of the series we will use this result and the attendant theory to prove a generalization to graphs on surfaces with several precolored cycles.Comment: 48 pages, 4 figures This version: Revised according to reviewer comment
    corecore