THE UNIVERSITY OF WARWICK

Original citation:

Dvořák, Zdeněk, Král', Daniel and Thomas, Robin (2018) Three-coloring triangle-free graphs on surfaces II. 4-critical graphs in a disk. Journal of Combinatorial Theory Series B . doi:10.1016/j.jctb.2018.03.001

Permanent WRAP URL:

http://wrap.warwick.ac.uk/99563

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP URL' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Three-coloring triangle-free graphs on surfaces II. 4-critical graphs in a disk*

Zdeněk Dvořák ${ }^{\dagger} \quad$ Daniel Král ${ }^{\ddagger} \quad$ Robin Thomas ${ }^{\S}$

June 29, 2017

Abstract

Let G be a plane graph of girth at least five. We show that if there exists a 3-coloring ϕ of a cycle C of G that does not extend to a 3-coloring of G, then G has a subgraph H on $O(|C|)$ vertices that also has no 3coloring extending ϕ. This is asymptotically best possible and improves a previous bound of Thomassen. In the next paper of the series we will use this result and the attendant theory to prove a generalization to graphs on surfaces with several precolored cycles.

1 Introduction

This paper is a part of a series aimed at studying the 3-colorability of graphs on a fixed surface that are either triangle-free, or have their triangles restricted in some way. Historically the first result in this direction is the following classical theorem of Grötzsch [8].

Theorem 1.1. Every triangle-free planar graph is 3-colorable.
Thomassen $[13,14,16]$ found three reasonably simple proofs of this statement. Recently, two of us, in joint work with Kawarabayashi [3] were able to design a linear-time algorithm to 3 -color triangle-free planar graphs, and as a by-product found perhaps a yet simpler proof of Theorem 1.1. Another significantly different proof was given by Kostochka and Yancey [10].

[^0]The statement of Theorem 1.1 cannot be directly extended to any surface other than the sphere. In fact, for every non-planar surface Σ there are infinitely many 4 -critical triangle-free graphs that can be drawn in Σ. (A graph is 4critical if it is not 3 -colorable, but every proper subgraph is.) For instance, the graphs obtained from an odd cycle of length five or more by applying Mycielski's construction [1, Section 8.5] have that property. Thus an algorithm for testing 3-colorability of triangle-free graphs on a fixed surface will have to involve more than just testing the presence of finitely many obstructions.

The situation is different for graphs of girth at least five by another deep theorem of Thomassen [15], the following.

Theorem 1.2. For every surface Σ there are only finitely many 4-critical graphs of girth at least five that can be drawn in Σ.

Thus the 3 -colorability problem on a fixed surface has a polynomial-time algorithm for graphs of girth at least five, but the presence of cycles of length four complicates matters. Let us remark that there are no 4 -critical graphs of girth at least five on the projective plane and the torus [13] and on the Klein bottle [12].

The only non-planar surface for which the 3-colorability problem for trianglefree graphs is fully characterized is the projective plane. Building on earlier work of Youngs [18], Gimbel and Thomassen [7] obtained the following elegant characterization. A graph drawn in a surface is a quadrangulation if every face is bounded by a cycle of length four.

Theorem 1.3. A triangle-free graph drawn in the projective plane is 3-colorable if and only if it has no subgraph isomorphic to a non-bipartite quadrangulation of the projective plane.

For other surfaces there does not seem to be a similarly nice characterization. Gimbel and Thomassen [7, Problem 3] asked whether there is a polynomialtime algorithm to test the 3-colorability of triangle-free graphs embeddable in a fixed surface. In a later paper of this series we will resolve this question in the affirmative. The algorithm naturally breaks into two steps. The first is when the graph is a quadrangulation, except perhaps for a bounded number of larger faces of bounded size, which will be allowed to be precolored. In this case there is a simple topological obstruction to the existence of a coloring extension based on the so-called "winding number" of the precoloring. Conversely, if the obstruction is not present and the graph is highly "locally planar", then we can show that the precoloring can be extended to a 3 -coloring of the entire graph. This can be exploited to design a polynomial-time algorithm. With additional effort the algorithm can be made to run in linear time.

The second step covers the remaining case, when the graph has either many faces of size at least five, or one large face, and the same holds for every subgraph. In that case we show that the graph is 3-colorable. That is a consequence of the following theorem [5], which will form the cornerstone of the series of our papers.

Theorem 1.4. There exists an absolute constant K with the following property. Let G be a graph drawn in a surface Σ of Euler genus γ with no separating cycles of length at most four, and let t be the number of triangles in G. If G is 4 -critical, then $\sum|f| \leq K(t+\gamma)$, where the summation is over all faces f of G of length at least five.

If G has girth at least five, then $t=0$ and every face has length at least five. Thus Theorem 1.4 implies Theorem 1.2, and, in fact, improves the bound given by the proof of Theorem 1.2 in [15]. The fact that our bound in Theorem 1.4 is linear in the number of triangles is needed in our solution [6] of a problem of Havel [9], as follows.

Theorem 1.5. There exists an absolute constant d such that if G is a planar graph and every two distinct triangles in G are at distance at least d, then G is 3-colorable.

Our technique is a refinement of the standard method of reducible configurations. We show that every sufficiently generic graph G (i.e., a graph that is large enough and cannot be decomposed to smaller pieces along cuts simplifying the problem) embedded in a surface contains one of a fixed list of subgraphs. Each such configuration enables us to obtain a smaller 4-critical graph G^{\prime} with the property that every 3-coloring of G^{\prime} corresponds to a 3-coloring of G. Furthermore, we perform the reduction in such a way that a properly defined weight of G^{\prime} is greater or equal to the weight of G. A standard inductive argument then shows that the weight of every 4 -critical graph is bounded, which also restricts its size. Unfortunately, this brief exposition hides a large number of technical details that need to be dealt with.

In this paper, we introduce this basic technique and apply it to prove the following special case of Theorem 1.4.

Theorem 1.6. Let G be a graph of girth at least five drawn in the plane, let C be a cycle in G, and let ϕ be a 3-coloring of C that does not extend to a 3 -coloring of G. Then there exists a subgraph H of G containing C such that $|V(H)| \leq 1715|V(C)|$ and H has no 3 -coloring extending ϕ.

After we obtained a proof of Theorem 1.6, but before we wrote it down and made it public, the first author and Kawarabayashi [2] generalized Theorem 1.6 to list-coloring. Their proof is about as long as ours, but has the added advantage that it replaces 1715 by a much smaller constant. However, we are proceeding with publication of our paper, because we need the theory it develops for the proof of Theorem 1.4 for graphs of girth at least five, which will appear in the next paper of our series. It is natural to ask whether an analogue of Theorem 1.4 restricted to graphs of girth at least five holds in the list-coloring setting. An affirmative answer would be implied by the following conjecture, see [11] for details. Luke Postle (private communication) believes he has a proof of Conjecture 1.7, which however has not yet been written down.
Conjecture 1.7. For every integer $k \geq 5$, there exists an integer K with the following property. Let G be a planar graph of girth at least five, let C_{1}, C_{2} be
two cycles in G of lengths at most k, and for every $v \in V(G)$ let $L(v)$ be a set such that $|L(v)|=1$ if $v \in V\left(C_{1} \cup C_{2}\right)$ and $|L(v)| \geq 3$ otherwise. If there exists no proper coloring ϕ of G such that $\phi(v) \in L(v)$ for every $v \in V(G)$, then G has a subgraph H on at most K vertices such that C_{1} and C_{2} are subgraphs of H and there exists no proper coloring ψ of H such that $\phi(v) \in L(v)$ for every $v \in V(H)$.

In order to avoid duplication of work in the next paper of the series we state many of the auxiliary results in this paper in the more general setting of graphs on surfaces. For this purpose, we require some definitions introduced in the following section. In Section 3, we describe more precisely what we mean by a reducible configuration, its appearance in the considered graph and its reduction. In Section 4, we show that the reductions preserve 3-colorings. In Section 5, we give the discharging argument used to show the existence of a reducible configuration. In Section 6, we argue that the reductions preserve the assumptions of the theorem. In Section 7, we analyze the change of the weights during the reduction. In Section 8, we combine the results to prove Theorem 1.6. Finally, in Section 9 we prove a technical result summarizing the conclusions of this paper that will be used in the next paper [4] of this series.

2 Definitions

All graphs in this paper are finite and simple, with no loops or parallel edges.
A surface is a compact connected 2-manifold with (possibly null) boundary. Each component of the boundary is homeomorphic to the circle, and we call it a cuff. For non-negative integers a, b and c, let $\Sigma(a, b, c)$ denote the surface obtained from the sphere by adding a handles, b crosscaps and removing the interiors of c pairwise disjoint closed discs. A standard result in topology shows that every surface is homeomorphic to $\Sigma(a, b, c)$ for some choice of a, b and c. Note that $\Sigma(0,0,0)$ is a sphere, $\Sigma(0,0,1)$ is a closed disk, $\Sigma(0,0,2)$ is a cylinder, $\Sigma(1,0,0)$ is a torus, $\Sigma(0,1,0)$ is a projective plane and $\Sigma(0,2,0)$ is a Klein bottle. The Euler genus $g(\Sigma)$ of the surface $\Sigma=\Sigma(a, b, c)$ is defined as $2 a+b$. For a cuff C of Σ, let \widehat{C} denote an open disk with boundary C disjoint from Σ, and let $\Sigma+\widehat{C}$ be the surface obtained by gluing Σ and \widehat{C} together, that is, by closing C with a patch. Let $\widehat{\Sigma}=\Sigma+\widehat{C_{1}}+\ldots+\widehat{C_{c}}$, where C_{1}, \ldots, C_{c} are the cuffs of Σ, be the surface without boundary obtained from Σ by patching all the cuffs.

Consider a graph G embedded in the surface Σ; when useful, we identify G with the topological space consisting of the points corresponding to the vertices of G and the simple curves corresponding to the edges of G. We say that the embedding is normal if every cuff of Σ is equal to a cycle in G, and we call such a cycle a ring. Throughout the paper, all graphs are embedded normally. A face f of G is a maximal arcwise-connected subset of $\Sigma-G$. We write $F(G)$ for the set of faces of G. The boundary of a face is equal to a union of closed walks of G, which we call the boundary walks of f.

Consider a ring R. If R is a triangle and at most one vertex of R has degree greater than two in G, we say that R is a vertex-like ring. A ring with only
vertices of degree two is isolated. For a vertex-like ring R that is not isolated, the main vertex of R is its vertex of degree greater than two. A vertex v of G is a ring vertex if v is belongs to a ring (i.e., v is drawn in the boundary of Σ), and v is internal otherwise. A cycle K in G is separating or separates the surface if $\widehat{\Sigma}-K$ has at least two components, and K is non-separating otherwise. A cycle K is contractible if there exists a closed disk $\Delta \subseteq \Sigma$ with boundary equal to K. A cycle K surrounds the cuff C if K is not contractible in Σ, but it is contractible in $\Sigma+\widehat{C}$. We say that K surrounds a ring R if K surrounds the cuff incident with R.

Let G be a graph embedded in a surface Σ, let the embedding be normal, and let \mathcal{R} be the set of rings of this embedding. In those circumstances we say that G is a graph in Σ with rings \mathcal{R}. Furthermore, some vertex-like rings are designated as weak vertex-like rings. At this point, let us remark that weak vertex-like rings are a technical device designed to deal with cutvertices in Theorem 1.4. They will not play any role in this paper, but we need to introduce them in order to be able to formulate the lemmas in this paper in such a way that they can be applied in the proof of Theorem 1.4.

For a vertex-like ring R, we define the length of R as $|R|=0$ if R is weak and $|R|=1$ otherwise. For a ring R that is not vertex-like, the length $|R|$ of R is the number of vertices of R. For a face f, by $|f|$ we mean the sum of the lengths of the boundary walks of f (in particular, if an edge appears twice in the boundary walks, it contributes 2 to $|f|$).

Let G be a graph with rings \mathcal{R}. Let $H=\bigcup \mathcal{R}$ and let H^{\prime} be a (not necessarily induced) subgraph of G obtained from H by, for each weak vertex-like ring R, removing the main vertex and one of the non-main vertices of R (or by removing two vertices of R if R has no main vertex), so that H^{\prime} intersects R in exactly one non-main vertex. A precoloring ψ of \mathcal{R} is a 3 -coloring of the graph H^{\prime}. A precoloring of \mathcal{R} extends to a 3-coloring of G if there exists a 3-coloring ϕ of G such that $\phi(v)=\psi(v)$ for every $v \in V\left(H^{\prime}\right)$. The graph G is \mathcal{R}-critical if $G \neq H$ and for every proper subgraph G^{\prime} of G that contains H, there exists a precoloring of \mathcal{R} that extends to a 3-coloring of G^{\prime}, but not to a 3-coloring of G. For a precoloring κ of \mathcal{R} the graph G is κ-critical if κ does not extend to a 3-coloring of G, but it extends to a 3-coloring of every proper subgraph of G that contains \mathcal{R}. Let us remark that if G is κ-critical for some κ, then it is \mathcal{R}-critical, but the converse is not true (for example, consider a graph consisting of a single ring with two chords). On the other hand, if κ is a precoloring of the rings of G that does not extend to a 3-coloring of G, then G contains a (not necessarily unique) κ-critical subgraph.

3 Reducible configurations

By a plane graph we mean a graph G drawn in the plane with no crossings. Thus G has exactly one unbounded face, called the infinite face; all the other faces are called finite. An isomorphism of plane graphs maps finite faces to finite faces and the infinite face to the infinite face.

A configuration is a quintuple $\gamma=(G, \mathcal{F}, d, \mathcal{I}, \mathcal{A})$, where

- G is a plane graph,
- \mathcal{F} is a set of finite faces of G,
- d is a function that maps a set $\operatorname{dom}(d) \subseteq V(G)$ to $\{3,4, \ldots\}$,
- \mathcal{I} is a subset of $V(G) \backslash \operatorname{dom}(d)$, and
- \mathcal{A} is a subset of $V(G) \backslash \operatorname{dom}(d)$ of size zero or two.

If γ is a configuration, then we write $G_{\gamma}:=G, \mathcal{F}_{\gamma}:=\mathcal{F}, d_{\gamma}:=d, \mathcal{I}_{\gamma}:=\mathcal{I}$ and $\mathcal{A}_{\gamma}:=\mathcal{A}$.

Two configurations γ and γ^{\prime} are isomorphic if there exists an isomorphism ϕ of the plane graphs G_{γ} and $G_{\gamma^{\prime}}$ that maps \mathcal{F}_{γ} to $\mathcal{F}_{\gamma^{\prime}}, \mathcal{I}_{\gamma}$ to $\mathcal{I}_{\gamma^{\prime}}, \mathcal{A}_{\gamma}$ to $\mathcal{A}_{\gamma^{\prime}}$, $\operatorname{dom}\left(d_{\gamma}\right)$ to $\operatorname{dom}\left(d_{\gamma^{\prime}}\right)$ and $d_{\gamma}(v)=d_{\gamma^{\prime}}(\phi(v))$ for every $v \in \operatorname{dom}\left(d_{\gamma}\right)$. Figure 1 contains the depictions of several configurations, using the following conventions. The graph G_{γ} is drawn in the figure (ignoring the "half-edges" and dashed edges for a moment); \mathcal{F}_{γ} consists of all the finite faces of G_{γ} that do not include any half-edges in their interior; the elements of \mathcal{I}_{γ} are indicated by \mathcal{I} next to them; if \mathcal{A}_{γ} is non-empty, then the two vertices of \mathcal{A}_{γ} are joined by a dashed edge; the set $\operatorname{dom}\left(d_{\gamma}\right)$ consists of vertices drawn by empty circles; and the value $d_{\gamma}(v)$ is equal to the number of edges and half-edges incident with v in the figure. A configuration is good if it is isomorphic to one of the configurations depicted in Figure 1.

Let γ be a good configuration and either let $H=G_{\gamma}$, or let H be a plane graph obtained from G_{γ} by identifying two vertices of $V\left(G_{\gamma}\right) \backslash \operatorname{dom}\left(d_{\gamma}\right)$ that are at distance at least five in G_{γ}. (The latter is only possible when γ is R 7 or R7.2.) In those circumstances we say that H is an imprint of γ. It follows that every face in \mathcal{F}_{γ} may be regarded as a face of H, and that $\operatorname{dom}\left(d_{\gamma}\right) \subseteq V(H)$.

Let G be a graph in a surface Σ with rings \mathcal{R}. We say that a configuration γ faintly appears in G if

- some imprint H of γ is a subgraph of G,
- every face in \mathcal{F}_{γ} is a face of G,
- $\operatorname{dom}\left(d_{\gamma}\right) \cap V(\mathcal{R})=\emptyset$,
- if $v \in \operatorname{dom}\left(d_{\gamma}\right)$, then $\operatorname{deg}_{G}(v)=d_{\gamma}(v)$, and
- at most one vertex of \mathcal{I}_{γ} belongs to $V(\mathcal{R})$.

If a configuration γ faintly appears in G, then we say that a subgraph J of G touches γ if an edge of J is incident with a face in \mathcal{F}_{γ}. We say that γ weakly appears in G if it faintly appears and

- no cycle of length at most four distinct from rings touches γ and if γ is R7, then $x_{3} \neq x_{7}$ or $x_{1} \neq x_{6}$,
- if $u, v \in \operatorname{dom}\left(d_{\gamma}\right)$ are adjacent in G, then u, v are adjacent in G_{γ},
- if γ is isomorphic to R 4 and the vertices corresponding to x_{4} and x_{5} both belong to \mathcal{R}, then the vertex corresponding to v_{2} does not belong to \mathcal{R}.

Let a good configuration γ weakly appear in G. We wish to define a new graph G^{\prime} in Σ with rings \mathcal{R}. For the definition we need to distinguish several cases. Assume first that γ is not isomorphic to R4. Let the graph G^{\prime} be obtained from $G \backslash \operatorname{dom}\left(d_{\gamma}\right)$ by adding an edge joining the vertices in \mathcal{A}_{γ} if $\mathcal{A}_{\gamma} \neq \emptyset$, and by identifying the vertices in \mathcal{I}_{γ}. If parallel edges are created, remove all edges but one from each bunch of parallel edges, so that each edge of G^{\prime} corresponds to a

R6

R7

R7.1

R7.3

R7.4

Figure 1: Reducible configurations.
unique edge of G. Since no cycle of length at most four touches γ and if γ is R 7 , then $x_{3} \neq x_{7}$ or $x_{1} \neq x_{6}$, it follows that G^{\prime} has no loops. It also follows that \mathcal{R} is a set of rings for G^{\prime}. We will refer to the added edge as the new edge and to the vertex that resulted from the identification of vertices as the new vertex. If two vertices $u, v \in \mathcal{I}_{\gamma}$ have a common neighbor $x \in V\left(G_{\gamma}\right) \backslash \operatorname{dom}\left(d_{\gamma}\right)$ and w is the new vertex arising by identification of u and v, then we call the edge $w x$ squashed.

We also need to specify an embedding of G^{\prime} in Σ. There is a unique natural way to make the edge additions and vertex identifications inside the faces of \mathcal{F}_{γ}, and that is how the embedding of G^{\prime} will be defined. Formally, for every pair $u, v \in \mathcal{A}_{\gamma}$ and every pair $u, v \in \mathcal{I}_{\gamma}$ of distinct vertices we define the replacement u, v-path as the shortest path from u to v in G_{γ}. It follows by inspecting all the good configurations that the replacement path is unique. Now we identify u and v or join them by an edge along the replacement u, v-path P, with the proviso that if P includes a vertex $v \in V\left(G_{\gamma}\right) \backslash \operatorname{dom}\left(d_{\gamma}\right)$ (specifically, vertex v_{4} or v_{6} of R3 or vertex z of R7), then prior to making the edge addition or vertex identification we shift P slightly into the unique face f of \mathcal{F}_{γ} incident with v. Note that P stays in Σ and its homotopy does not change by such a shift. This completes the definition of G^{\prime} when γ is not R4.

Now let γ be R4. If not both x_{4} and x_{5} belong to \mathcal{R}, then we proceed as above, treating the configuration as if $\left\{x_{4}, x_{5}\right\}$ belonged to \mathcal{I}_{γ}; that is, identifying those vertices. We may therefore assume that both x_{4}, x_{5} belong to \mathcal{R}. Let ϕ be a 3-coloring of \mathcal{R}; the definition of G^{\prime} will now depend on ϕ. If $\phi\left(x_{4}\right)=\phi\left(x_{5}\right)$, then we define G^{\prime} exactly as in the previous two paragraphs; in particular, we do not identify x_{4} and x_{5}. If $\phi\left(x_{4}\right) \neq \phi\left(x_{5}\right)$, then we let G^{\prime} be obtained from $G \backslash\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ by identifying v_{2} and x_{5} along the "replacement path" $v_{2} v_{1} v_{5} x_{5}$ (we do not add the edge between $x_{1}, x_{3} \in \mathcal{A}_{\gamma}$). Let us remark that the last condition in the definition of weak appearance guarantees that in this case v_{2} does not belong to \mathcal{R}. Then G^{\prime} is a graph in Σ with rings \mathcal{R}, and we say that it is the γ-reduction of G. When we wish to emphasize the dependence on ϕ we will say that G^{\prime} is the γ-reduction of G with respect to ϕ.

4 Colorings

In this section, we show that each 3 -coloring of the γ-reduction of a graph G extends to a 3-coloring of G. Most of the reductions were used earlier [8, 13], but R5, R7 and their variants seem to be new. For the sake of completeness we include proofs of extendability for all good configurations.

Lemma 4.1. Let G be a graph in a surface Σ with rings \mathcal{R}, let γ be a good configuration that weakly appears in G, let ϕ_{0} be a 3 -coloring of \mathcal{R}, and let G_{1} be the γ-reduction of G with respect to ϕ_{0}. If ϕ_{0} extends to a 3 -coloring of G_{1}, then it extends to a 3-coloring of G.

Proof. Let γ be as stated, and let the vertices of G_{γ} be labeled as in Figure 1. Let ϕ be a 3 -coloring of G_{1} that extends the coloring ϕ_{0}. Then ϕ can be regarded
as a 3 -coloring of $G \backslash \operatorname{dom}\left(d_{\gamma}\right)$, and our objective is to extend it to a 3-coloring of G. For each vertex $v_{i} \in \operatorname{dom}\left(d_{\gamma}\right)$ that has a unique neighbor outside of the configuration, let this neighbor be denoted by x_{i}. We will use the following easy observations:
(1) Suppose that $u_{1}, u_{2} \in V(G)$ are adjacent vertices of degree three, w_{1} and w_{2} are the neighbors of u_{1} distinct from u_{2} and w_{3} and w_{4} are the neighbors of u_{2} distinct from u_{1}. A 3-coloring ψ of w_{1}, \ldots, w_{4} extends to u_{1} and u_{2}, unless $\psi\left(w_{1}\right)=\psi\left(w_{3}\right) \neq \psi\left(w_{2}\right)=\psi\left(w_{4}\right)$ or $\psi\left(w_{1}\right)=\psi\left(w_{4}\right) \neq \psi\left(w_{2}\right)=\psi\left(w_{3}\right)$.
(2) Let $P=u_{1} u_{2} \ldots u_{k}$ be a path in G and L_{1}, \ldots, L_{k} lists of colors of size two, such that $L_{i} \neq L_{j}$ for some $1 \leq i<j \leq k$. Then there exist colorings ψ_{1}, ψ_{2} and ψ_{3} of P such that $\psi_{i}\left(v_{j}\right) \in L_{j}$ for $1 \leq i \leq 3$ and $1 \leq j \leq k$, and for each $1 \leq i<j \leq 3$ either $\psi_{i}\left(u_{1}\right) \neq \psi_{j}\left(u_{1}\right)$ or $\psi_{i}\left(u_{k}\right) \neq \psi_{j}\left(u_{k}\right)$.

Let us now consider each configuration separately.
Configurations R1 and R2. Each of the vertices of the cycle $v_{1} v_{2} \ldots v_{k}$ (where $k=5$ for the configuration R1 and $k=7$ for R2) has a list of two available colors, and the lists of v_{1} and v_{3} are not the same. By (2), there exists a coloring of the path $v_{1} \ldots v_{k}$ from these lists such that the colors of v_{1} and v_{k} are not the same, giving a coloring of G, as desired.

Configuration R3. The vertices v_{1}, v_{3} and v_{5} inherit the color of the new vertex. Then we can color the vertices x_{2} and v_{2} in order, because at the time each of those vertices is colored it is adjacent to vertices of at most two different colors.

Configuration R4. Suppose first that at least one of x_{4} and x_{5} is internal, or that both belong to \mathcal{R} and $\phi_{0}\left(x_{4}\right)=\phi_{0}\left(x_{5}\right)$. If $\phi\left(x_{1}\right)=\phi\left(v_{2}\right)$, then color the vertices in the order v_{3}, v_{4}, v_{5} and v_{1} (each of them has neighbors of at most two different colors when it is being colored). The case that $\phi\left(x_{3}\right)=\phi\left(v_{2}\right)$ is symmetric. Therefore, we may assume that $\phi\left(x_{1}\right)=1, \phi\left(v_{2}\right)=2$ and $\phi\left(x_{3}\right)=3$. Set $\phi\left(v_{1}\right)=3$ and $\phi\left(v_{3}\right)=1$ and extend the coloring to v_{4} and v_{5} by (1). Then ϕ is a desired 3 -coloring of G.

We may therefore assume that both x_{4} and x_{5} belong to \mathcal{R} and $\phi_{0}\left(x_{4}\right) \neq$ $\phi_{0}\left(x_{5}\right)$. In this case, the definition of γ-reduction ensures that $\phi\left(v_{2}\right)=\phi\left(x_{5}\right)$. We may assume that $\phi\left(v_{2}\right)=\phi\left(x_{5}\right)=1$ and $\phi\left(x_{4}\right)=2$. Let us set $\phi\left(v_{4}\right)=1$ and color v_{3}, v_{1} and v_{5} in this order.

Configuration R5. The reduction ensures that $\phi\left(v_{2}\right) \neq \phi\left(x_{8}\right)$ and $\phi\left(v_{4}\right)=$ $\phi\left(x_{6}\right)$. If $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)$, then ϕ extends - color the vertices in the order v_{1}, $v_{8}, v_{5}, v_{6}, v_{7}$ and v_{3}, and observe that for each of these vertices, at most two different colors appear on already colored neighbors. Thus we may assume that $\phi\left(v_{2}\right)=1$ and $\phi\left(v_{4}\right)=\phi\left(x_{6}\right)=2$. We set $\phi\left(v_{3}\right)=3$ and $\phi\left(v_{7}\right)=2$, and color the vertices v_{5} and v_{6} by (1). As $\phi\left(x_{8}\right) \neq \phi\left(v_{2}\right) \neq \phi\left(v_{7}\right)$, the observation (1) implies that the coloring extends to v_{1} and v_{8}.

Configurations R6 and R6.1. In both cases, the reduction ensures that $\phi\left(x_{1}\right) \neq \phi\left(x_{5}\right)$, say $\phi\left(x_{1}\right)=1$ and $\phi\left(x_{5}\right)=2$. If $\phi\left(x_{6}\right)=1$, then set $\phi\left(v_{5}\right)=1$, and color the vertices in order $v_{4}, v_{3}, v_{2}, v_{1}, v_{8}, v_{7}$ and v_{6}. Therefore, we may assume that this is not the case. By symmetry, we may also assume that $\phi\left(x_{4}\right) \neq 1$ and $\phi\left(x_{2}\right), \phi\left(x_{8}\right) \neq 2$. If $\phi\left(x_{2}\right)=\phi\left(x_{8}\right)=3$, then set $\phi\left(v_{1}\right)=3$, $\phi\left(v_{5}\right)=1$ and color $v_{6}, v_{7}, v_{8}, v_{4}, v_{3}$ and v_{2} in this order. Otherwise, by symmetry we may assume that $\phi\left(x_{2}\right)=1$. If v_{3} and v_{7} are adjacent, or if $\phi\left(x_{3}\right) \neq 1$, then set $\phi\left(v_{3}\right)=\phi\left(v_{5}\right)=1$ and color $v_{4}, v_{6}, v_{7}, v_{8}, v_{1}$ and v_{2} in this order. Therefore, assume that v_{3} and v_{7} are not adjacent and $\phi\left(x_{3}\right)=1$.

If $\phi\left(x_{6}\right)=3$, then set $\phi\left(v_{4}\right)=1, \phi\left(v_{1}\right)=\phi\left(v_{3}\right)=2$ and $\phi\left(v_{2}\right)=\phi\left(v_{5}\right)=3$ and color v_{8}, v_{7} and v_{6} in this order. Thus, assume that $\phi\left(x_{6}\right)=2$. By the argument symmetrical to the one used for x_{3}, we conclude that ϕ extends unless $\phi\left(x_{7}\right)=2$. If $\phi\left(x_{8}\right)=3$, then set $\phi\left(v_{4}\right)=\phi\left(v_{6}\right)=\phi\left(v_{8}\right)=1, \phi\left(v_{1}\right)=\phi\left(v_{3}\right)=2$ and $\phi\left(v_{2}\right)=\phi\left(v_{5}\right)=\phi\left(v_{7}\right)=3$. Thus assume that $\phi\left(x_{8}\right)=1$ and by symmetry, $\phi\left(x_{4}\right)=2$. In this case, set $\phi\left(v_{5}\right)=\phi\left(v_{7}\right)=1, \phi\left(v_{1}\right)=\phi\left(v_{3}\right)=2$ and $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)=\phi\left(v_{6}\right)=\phi\left(v_{8}\right)=3$.

Configuration R7. The reduction ensures that $\phi\left(x_{1}\right) \neq \phi\left(x_{3}\right)$, say $\phi\left(x_{1}\right)=1$ and $\phi\left(x_{3}\right)=2$. To preserve the symmetry of the configuration, let us for a while ignore the identification of x_{6} and x_{7}.

Suppose first that $\phi\left(x_{8}\right)=1$. By (2), there exists a coloring ψ of the path $v_{1} v_{2} \ldots v_{8}$ such that $\psi\left(v_{1}\right)=\psi\left(v_{8}\right) \in\{2,3\}$. We can extend ψ to v_{12} and v_{11}. By (1), if $\phi\left(x_{9}\right) \neq \phi\left(x_{10}\right)$, then ψ extends to v_{9} and v_{10} as well. We next analyze the case that $\phi\left(x_{9}\right)=\phi\left(x_{10}\right)=c$. Set $\phi\left(v_{11}\right)=1$. If $\phi\left(x_{2}\right)=1$, then color v_{3} by 1 , and color the vertices $v_{4}, v_{5}, \ldots, v_{10}, v_{1}, v_{2}, v_{12}$ in this order. If $\phi\left(x_{6}\right)=2$, then color v_{12} by 2 and extend the coloring to the 10 -cycle $v_{1} \ldots v_{10}$. Therefore, assume that $\phi\left(x_{2}\right) \neq 1$ and $d=\phi\left(x_{6}\right) \neq 2$. Let us distinguish several cases:

- $d=3, \phi\left(x_{4}\right)=1$ and $\phi\left(x_{5}\right)=3$: In this case, set $\phi\left(v_{12}\right)=3, \phi\left(v_{3}\right)=1$ and color $v_{2}, v_{1}, v_{10}, v_{9}, \ldots, v_{4}$ in order.
- $d=1$ and $\phi\left(x_{4}\right)=\phi\left(x_{5}\right)$: Set $\phi\left(v_{3}\right)=1$ and color the vertices v_{2}, v_{1}, v_{10}, $v_{9}, \ldots, v_{6}, v_{12}$ in order. Note that $\phi\left(v_{3}\right)=1 \neq \phi\left(v_{6}\right)$, thus ϕ extends the coloring to v_{4} and v_{5} by (1).
- Otherwise, set $\phi\left(v_{2}\right)=1, \phi\left(v_{3}\right)=3, \phi\left(v_{12}\right)=2, \phi\left(v_{6}\right)=4-d$, and color vertices $v_{7}, \ldots, v_{10}, v_{1}$ in order. By (1), this coloring extends to v_{4} and v_{5}.

We conclude that if ϕ does not extend to the empty-circle vertices, then $\phi\left(x_{8}\right)=$ $c_{1} \neq 1$, and by the symmetry, $\phi\left(x_{6}\right)=c_{2} \neq 2$.

There are four possible colorings of v_{1} and v_{8} (two choices of colors for each of these vertices, so that the color of v_{1} is not 1 and the color of v_{8} is not c_{1}). By (1), out of these four colorings, all but at most one extend to v_{9} and v_{10}; if such a coloring of v_{1} and v_{8} exists, let it be denoted by ω_{1}; otherwise, set $\omega_{1}\left(v_{1}\right)=1$ and $\omega_{1}\left(v_{8}\right)=c_{1}$. Symmetrically, let ω_{2} be the unique coloring of v_{3} and v_{6} such that $\omega_{2}\left(v_{3}\right) \neq 2, \omega_{2}\left(v_{6}\right) \neq c_{2}$ and ω_{2} does not extend to v_{4} and v_{5}, if such a coloring exists, and $\omega_{2}\left(v_{3}\right)=2$ and $\omega_{2}\left(v_{6}\right)=c_{2}$ otherwise.

If $\phi\left(x_{2}\right)=2$, then let $a=2$, otherwise let $a=3$. Note that any color $c \neq 2=\phi\left(x_{3}\right)$ satisfies $\left|\left\{a, c, \phi\left(x_{2}\right)\right\}\right|=2$. In the following cases, we can extend ϕ to a coloring ψ of the path $v_{1} v_{10} v_{9} v_{8} v_{7} v_{6}$ such that $\psi\left(v_{1}\right)=a$ and $b=\psi\left(v_{6}\right) \neq \omega_{2}\left(v_{6}\right):$

- $\omega_{1}\left(v_{1}\right) \neq a$: choose $b \notin\left\{\phi\left(x_{6}\right), \omega_{2}\left(v_{6}\right)\right\}$, color v_{7} and v_{8}, and note that we can extend this coloring to v_{9} and v_{10} by the definition of ω_{1}.
- $\omega_{2}\left(v_{6}\right)=c_{2}$: color the vertices $v_{10}, v_{9}, \ldots, v_{6}$ in this order.
- $\phi\left(x_{7}\right) \notin\left\{c_{1}, \omega_{1}\left(v_{8}\right)\right\} \cap\left\{c_{2}, \omega_{2}\left(v_{6}\right)\right\}$ or $\left\{c_{1}, \omega_{1}\left(v_{8}\right)\right\}=\left\{c_{2}, \omega_{2}\left(v_{6}\right)\right\}$: excluding the previous two cases, we may assume that $c_{1} \neq \omega_{1}\left(v_{8}\right)$ and $c_{2} \neq \omega_{2}\left(v_{6}\right)$. Color v_{8} by the color $d \notin\left\{c_{1}, \omega_{1}\left(v_{8}\right)\right\}$ and v_{6} by the color $b \notin\left\{c_{2}, \omega_{2}\left(v_{6}\right)\right\}$, extend the coloring to v_{9} and v_{10} by the definition of ω_{1}, and observe that $\left|\left\{\phi\left(x_{7}\right), b, d\right\}\right| \leq 2$, thus v_{7} can be colored as well.

If such a coloring ψ exists, then choose a color $c \neq \phi\left(x_{3}\right)$ such that $c=b$ or $\{b, c\} \neq\left\{a, \psi\left(v_{8}\right)\right\}$; this ensures that the coloring extends to v_{11} and v_{12} by (1). Since $b \neq \omega_{2}\left(v_{6}\right)$, this coloring extends to v_{4} and v_{5} as well. Finally, the choice of a ensures that $\left|\left\{a, c, \phi\left(x_{2}\right)\right\}\right|=2$, hence the coloring extends to v_{2}. Therefore, we may assume that such the coloring ψ does not exist, i.e., $\omega_{1}\left(v_{1}\right)=a, \omega_{2}\left(v_{6}\right) \neq c_{2}$, $\left\{c_{1}, \omega_{1}\left(v_{8}\right)\right\} \neq\left\{c_{2}, \omega_{2}\left(v_{6}\right)\right\}$ and $\phi\left(x_{7}\right) \in\left\{c_{1}, \omega_{1}\left(v_{8}\right)\right\} \cap\left\{c_{2}, \omega_{2}\left(v_{6}\right)\right\}$.

Let us now distinguish two cases:

- $\phi\left(x_{9}\right) \neq \phi\left(x_{10}\right)$: By (1), $a=\omega_{1}\left(v_{1}\right)=\phi\left(x_{9}\right)$. If $c_{1} \neq a$, then set $\phi\left(v_{1}\right)=$ $\phi\left(v_{8}\right)=a$ and color $v_{10}, v_{9}, v_{7}, v_{6}, \ldots, v_{2}$ in this order (v_{2} can be colored by the choice of a), and color v_{12} and v_{11}; hence, assume that $c_{1}=a$.
If $\phi\left(x_{10}\right)=5-a$, then set $\phi\left(v_{1}\right)=\phi\left(v_{8}\right)=5-a, \phi\left(v_{10}\right)=a$, and $\phi\left(v_{9}\right)=1$. Note that $\phi\left(x_{7}\right) \in\left\{c_{1}, \omega_{1}\left(v_{8}\right)\right\}=\{a, 5-a\}$ and $\left\{c_{2}, \omega_{2}\left(v_{6}\right)\right\}=\left\{1, \phi\left(x_{7}\right)\right\}$. Set $\phi\left(v_{7}\right)=1$ and choose $\phi\left(v_{6}\right) \notin\left\{c_{2}, \omega_{2}\left(v_{6}\right)\right\}$, i.e., $\phi\left(v_{6}\right)=5-\phi\left(x_{7}\right)$. Extend the coloring to v_{2}, v_{3}, v_{12} and v_{11} in this order. As $\phi\left(v_{6}\right) \neq$ $\omega_{2}\left(v_{6}\right)$, this coloring extends to v_{4} and v_{5}, giving a coloring of the whole configuration.

Therefore, assume that $\phi\left(x_{10}\right)=1$. Then $\omega_{1}\left(v_{8}\right)=1$ and $\phi\left(x_{7}\right) \in\{1, a\}$. Let us set $\phi\left(v_{1}\right)=\phi\left(v_{7}\right)=\phi\left(v_{9}\right)=5-a, \phi\left(v_{10}\right)=a$ and $\phi\left(v_{8}\right)=1$. Let us choose color $\phi\left(v_{6}\right) \notin\left\{c_{2}, \omega_{2}\left(v_{6}\right)\right\}$; note that $\phi\left(v_{6}\right) \neq 5-a$, since $\left\{c_{2}, \omega_{2}\left(v_{6}\right)\right\} \neq\left\{c_{1}, \omega_{1}\left(v_{8}\right)\right\}=\{1, a\}$. Color v_{2} and v_{3}, and extend the coloring to v_{4} and v_{5} (this is possible, since $\left.\phi\left(v_{6}\right) \neq \omega_{2}\left(v_{6}\right)\right)$. We may assume that this coloring does not extend to v_{11} and v_{12}, i.e., $\left\{\phi\left(v_{3}\right), \phi\left(v_{6}\right)\right\}=$ $\{1,5-a\}$, hence $\phi\left(v_{3}\right)=5-a$ and $\phi\left(v_{6}\right)=1$. As $\phi\left(v_{6}\right) \notin\left\{c_{2}, \omega_{2}\left(v_{6}\right)\right\}$, we get $\left\{c_{2}, \omega_{2}\left(v_{6}\right)\right\}=\{a, 5-a\}$ and $\phi\left(x_{7}\right)=a$. Since $c_{2} \neq 2$, we have $c_{2}=3$ and $\omega_{2}\left(v_{6}\right)=2$. As $\omega_{2}\left(v_{3}\right) \neq 2$, it follows that $\phi\left(x_{4}\right)=2$ and $\phi\left(x_{5}\right) \neq 2$.
Consider the coloring ψ with $\psi\left(v_{8}\right)=5-a, \psi\left(v_{7}\right)=\psi\left(v_{9}\right)=1, \psi\left(v_{6}\right)=2$, $\psi\left(v_{3}\right)=\psi\left(v_{5}\right)=4-\phi\left(x_{5}\right)$ and $\psi\left(v_{4}\right)=\phi\left(v_{5}\right)$, and assume that this coloring does not extend to the coloring of the whole configuration. On one hand, we may color v_{1} by a and v_{10} by $5-a$; then ψ extends to v_{2} by the definition of a, and since it does not extend to v_{11} and v_{12}, we
have $\{a, 5-a\}=\left\{2,4-\phi\left(x_{5}\right)\right\}$, and $\phi\left(x_{5}\right)=1$. On the other hand, we may color v_{1} by $5-a, v_{12}$ by 1 and v_{10} and v_{11} by a. Since this coloring does not extend to v_{2}, we have $\left|\left\{5-a, 3, \phi\left(x_{2}\right)\right\}\right|=3$, and $a=3$ and $\phi\left(x_{2}\right)=1$. In that case, we can color the configuration by setting $\phi\left(v_{3}\right)=\phi\left(v_{6}\right)=\phi\left(v_{8}\right)=1, \phi\left(v_{1}\right)=\phi\left(v_{5}\right)=\phi\left(v_{7}\right)=\phi\left(v_{9}\right)=\phi\left(v_{12}\right)=2$ and $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)=\phi\left(v_{10}\right)=\phi\left(v_{11}\right)=3$.

- $\phi\left(x_{9}\right)=\phi\left(x_{10}\right)$: By symmetry, we may also assume that $\phi\left(x_{4}\right)=\phi\left(x_{5}\right)$. At this point, we use the second relation guaranteed by the reduction, $\phi\left(x_{7}\right)=c_{2}$. If $c_{2} \neq 3$, then set $\phi\left(v_{7}\right)=3, \phi\left(v_{8}\right)=1$ and $\phi\left(v_{6}\right)=2$, color the 5 -cycle $v_{1} v_{2} v_{3} v_{12} v_{11}$, and extend the coloring to v_{4}, v_{5}, v_{9} and v_{10} by (1). Thus, we can assume that $c_{2}=3$.

If $\phi\left(x_{2}\right) \neq 1$, then set $\phi\left(v_{2}\right)=\phi\left(v_{6}\right)=\phi\left(v_{8}\right)=1, \phi\left(v_{1}\right)=\phi\left(v_{7}\right)=$ $\phi\left(v_{12}\right)=2$ and $\phi\left(v_{3}\right)=\phi\left(v_{11}\right)=3$, and extend the coloring to v_{4}, v_{5}, v_{9} and v_{10} by (1).
Finally, if $\phi\left(x_{2}\right)=1$, then set $\phi\left(v_{2}\right)=\phi\left(v_{8}\right)=5-c_{1}, \phi\left(v_{1}\right)=c_{1}$, $\phi\left(v_{3}\right)=\phi\left(v_{7}\right)=\phi\left(v_{11}\right)=1, \phi\left(v_{6}\right)=2$ and $\phi\left(v_{12}\right)=3$, and extend the coloring to v_{4}, v_{5}, v_{9} and v_{10} by (1).

Configuration R7.1. If $\phi\left(v_{3}\right)=\phi\left(v_{6}\right)$, then first color the 6 -cycle $v_{2} v_{1} v_{10} v_{9} v_{8} v_{7}$ (this is possible, as each of the vertices has at most one colored neighbor), and then color v_{11} and v_{12}. Thus, assume that $\phi\left(v_{3}\right)=1, \phi\left(v_{6}\right)=2$ and $\phi\left(v_{12}\right)=3$. Color the 5 -cycle $v_{1} v_{11} v_{8} v_{9} v_{10}$ (this is possible, as $\left.\phi\left(x_{1}\right) \neq \phi\left(x_{9}\right)\right)$. Note that in this coloring, $\phi\left(v_{1}\right) \neq 2$ or $\phi\left(v_{8}\right) \neq 1$, as $\phi\left(v_{11}\right) \neq \phi\left(v_{12}\right)=3$. Therefore, the coloring extends to v_{2} and v_{7} by (1).
Configuration R7.2. The reduction ensures that $\phi\left(x_{1}\right) \neq \phi\left(x_{3}\right)$, say $\phi\left(x_{1}\right)=1$ and $\phi\left(x_{3}\right)=2$. Also, by symmetry, we may assume that $c=\phi\left(x_{2}\right) \neq 1$. Suppose first that $\phi\left(v_{8}\right) \neq 1$. Then try coloring v_{11} and v_{3} by 1 and v_{1} by c. By (1), this coloring extends unless $\phi\left(v_{9}\right)=1$ and $\phi\left(v_{5}\right)=c$. If $\phi\left(v_{6}\right) \neq 2$, then set the color of v_{3} to 3 , instead, and observe that the coloring extends. Otherwise, $\phi\left(v_{6}\right)=2$, and set $\phi\left(v_{12}\right)=\phi\left(v_{2}\right)=1, \phi\left(v_{3}\right)=3$, and color v_{11} and v_{1}. The coloring extends to v_{10} and v_{4} by (1).

Therefore, we may assume that $\phi\left(v_{8}\right)=1$. Suppose that $\phi\left(v_{6}\right) \neq c$. Then try coloring v_{1} and v_{12} by c, v_{11} and v_{2} by $5-c$ and v_{3} by 1 . By (1), this coloring extends to v_{4} and v_{10} unless $\phi\left(v_{5}\right)=c$ and $\phi\left(v_{9}\right)=1$. In that case, set $\phi\left(v_{2}\right)=1, \phi\left(v_{3}\right)=3$, color v_{12}, v_{11} and v_{1} in this order, and extend the coloring to v_{4} and v_{10} by (1). Thus, we may assume that $\phi\left(v_{6}\right)=c$.

If $c \neq 2$, then set $\phi\left(v_{3}\right)=c$ and color $v_{4}, v_{10}, v_{1}, v_{2}, v_{11}$ and v_{12} in this order; hence, assume that $c=2$. Consider the coloring that assigns 1 to v_{2} and $v_{12}, 3$ to v_{11} and v_{3} and 2 to v_{1}. If this coloring does not extend to v_{4} and v_{10}, then (1) implies that $\phi\left(v_{5}\right)=2$ and $\phi\left(v_{9}\right)=3$. In that case, set $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)=\phi\left(v_{12}\right)=1, \phi\left(v_{10}\right)=\phi\left(v_{11}\right)=2$ and $\phi\left(v_{1}\right)=\phi\left(v_{3}\right)=3$.
Configuration R7.3. The reduction ensures that $\phi\left(x_{1}\right) \neq \phi\left(x_{3}\right)$, say $\phi\left(x_{1}\right)=1$ and $\phi\left(x_{3}\right)=2$. If $\phi\left(v_{8}\right) \neq 1$ and $\phi\left(v_{6}\right) \neq 2$, then color v_{11} by $1, v_{12}$ by 2 and extend the coloring to the 6 -cycle $v_{10} v_{1} v_{2} v_{3} v_{4} v_{5}$.

Assume now that $\phi\left(v_{8}\right)=1$ or $\phi\left(v_{6}\right)=2$. Suppose first that $\phi\left(v_{6}\right) \neq 2$, and thus $\phi\left(v_{8}\right)=1$. Then try setting the color of v_{1}, v_{5} and v_{12} to 2 and coloring v_{11} and v_{10}. If $\phi\left(x_{2}\right)=2$ or $\phi\left(x_{4}\right)=2$ or $\phi\left(x_{2}\right)=\phi\left(x_{4}\right)$, then the coloring extends to v_{2}, v_{3} and v_{4}, thus assume that $\left\{\phi\left(x_{2}\right), \phi\left(x_{4}\right)\right\}=\{1,3\}$. If $\phi\left(v_{9}\right) \neq 2$ or $\phi\left(v_{6}\right) \neq 3$, then set $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)=\phi\left(v_{11}\right)=2, \phi\left(v_{1}\right)=3$, color v_{12} and v_{3} and extend the coloring to v_{5} and v_{10} by (1). Otherwise, $\phi\left(v_{9}\right)=2$ and $\phi\left(v_{6}\right)=3$ and we set $\phi\left(v_{5}\right)=1, \phi\left(v_{1}\right)=\phi\left(v_{4}\right)=\phi\left(v_{12}\right)=2, \phi\left(v_{10}\right)=\phi\left(v_{11}\right)=3$, $\phi\left(v_{2}\right)=\phi\left(x_{4}\right)$ and $\phi\left(v_{3}\right)=\phi\left(x_{2}\right)$.

Therefore, it suffices to consider the case that $\phi\left(v_{6}\right)=2$. If $\phi\left(x_{4}\right) \neq 2$, then set $\phi\left(v_{4}\right)=2$, color the 5 -cycle $v_{1} v_{2} v_{3} v_{12} v_{11}$, and color v_{10} and v_{5}. So we have $\phi\left(x_{4}\right)=2$. Suppose that $\phi\left(x_{2}\right) \neq 2$. Then set $\phi\left(v_{2}\right)=2$ and $\phi\left(v_{1}\right)=3$. If $\phi\left(v_{8}\right) \neq 2$, then color v_{11} by 2 and color $v_{10}, v_{5}, v_{4}, v_{3}$ and v_{12} in this order. On the other hand, if $\phi\left(v_{8}\right)=2$, then note that $\phi\left(v_{9}\right) \neq 2$, and set $\phi\left(v_{10}\right)=2$, $\phi\left(v_{3}\right)=\phi\left(v_{5}\right)=\phi\left(v_{11}\right)=1$ and $\phi\left(v_{4}\right)=\phi\left(v_{12}\right)=3$. Thus, we can assume that $\phi\left(x_{2}\right)=2$.

Try setting $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)=\phi\left(v_{12}\right)=1$ and $\phi\left(v_{3}\right)=\phi\left(v_{5}\right)=3$. If $\phi\left(v_{9}\right) \neq 1$, then set $\phi\left(v_{10}\right)=1$ and color v_{11} and v_{1}; thus assume that $\phi\left(v_{9}\right)=1$. If $\phi\left(v_{8}\right) \neq 2$, then set $\phi\left(v_{10}\right)=\phi\left(v_{11}\right)=2$ and $\phi\left(v_{1}\right)=3$.

Finally, consider the case that $\phi\left(v_{9}\right)=1$ and $\phi\left(v_{8}\right)=2$. Then, we set $\phi\left(v_{3}\right)=\phi\left(v_{5}\right)=\phi\left(v_{11}\right)=1, \phi\left(v_{1}\right)=2$ and $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)=\phi\left(v_{10}\right)=\phi\left(v_{12}\right)=$ 3.

Configuration R7.4. The reduction ensures that $\phi\left(x_{3}\right) \neq \phi\left(v_{6}\right)$, say $\phi\left(v_{6}\right)=1$ and $\phi\left(x_{3}\right)=2$. Suppose first that $\phi\left(v_{8}\right) \neq \phi\left(v_{10}\right)$. If $\phi\left(v_{10}\right) \neq 2$, then let $\phi\left(v_{12}\right)=2, \phi\left(v_{11}\right)=\phi\left(v_{10}\right)$ and extend the coloring to the 5 -cycle $v_{1} v_{2} v_{3} v_{4} v_{5}$; thus assume that $\phi\left(v_{10}\right)=2$. If $\phi\left(x_{2}\right) \neq 2$, then set $\phi\left(v_{2}\right)=2, \phi\left(v_{3}\right)=1$, and color $v_{4}, v_{5}, v_{1}, v_{11}$ and v_{12} in this order. If $\phi\left(x_{2}\right)=2$, then set $\phi\left(v_{1}\right)=\phi\left(v_{3}\right)=$ $1, \phi\left(v_{2}\right)=3$, and color v_{11}, v_{12}, v_{4} and v_{5}, in this order.

Therefore, assume that $\phi\left(v_{8}\right)=\phi\left(v_{10}\right)=c$. If $c=2$, then color v_{12} by 2 , extend the coloring to the 5 -cycle $v_{1} \ldots v_{5}$, and color v_{11}. If $c=3$, then set $\phi\left(v_{1}\right)=\phi\left(v_{3}\right)=1, \phi\left(v_{11}\right)=2, \phi\left(v_{12}\right)=3$, and color v_{2}, v_{4} and v_{5} in this order. Thus, assume that $c=1$. Try setting $\phi\left(v_{1}\right)=\phi\left(v_{12}\right)=2$ and $\phi\left(v_{11}\right)=\phi\left(v_{5}\right)=3$. If $\phi\left(x_{4}\right) \neq 2$, then set $\phi\left(v_{4}\right)=2$ and color v_{2} and v_{3}. If $\phi\left(x_{4}\right)=2$ and $\phi\left(x_{2}\right) \neq 1$, then set $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)=1$ and $\phi\left(v_{3}\right)=3$.

Finally, consider the case that $\phi\left(x_{2}\right)=1$ and $\phi\left(x_{4}\right)=2$. Then, set $\phi\left(v_{3}\right)=1$, $\phi\left(v_{2}\right)=\phi\left(v_{5}\right)=\phi\left(v_{11}\right)=2$ and $\phi\left(v_{1}\right)=\phi\left(v_{4}\right)=\phi\left(v_{12}\right)=3$.

5 Discharging

Let G be a graph in a surface Σ with rings \mathcal{R}. A face is open 2 -cell if it is homeomorphic to an open disk. A face is closed 2 -cell if it is open 2-cell and bounded by a cycle. A face f is semi-closed 2 -cell if it is open 2-cell, and if a vertex v appears twice in the boundary walk of f, then v is the main vertex of a vertex-like ring R and the edges of R form part of the boundary walk of f. A face f is omnipresent if it is not open 2-cell and each of its boundary walks is a cycle bounding a closed disk $\Delta \subseteq \widehat{\Sigma} \backslash f$ containing exactly one ring. We say that
G has an internal 2 -cut if there exist sets $A, B \subseteq V(G)$ such that $A \cup B=V(G)$, $|A \cap B|=2, A-B \neq \emptyset \neq B-A, A$ includes all vertices of \mathcal{R}, and no edge of G has one end in $A-B$ and the other in $B-A$.

We wish to consider the following conditions that the triple (G, Σ, \mathcal{R}) may or may not satisfy:
(I0) every internal vertex of G has degree at least three,
(I1) G has no even cycle consisting of internal vertices of degree three,
(I2) G has no cycle C consisting of internal vertices of degree three, and two distinct adjacent vertices $u, v \in V(G)-V(C)$ such that both u and v have a neighbor in C,
(I3) every face of G is semi-closed 2-cell and has length at least 5,
(I4) if a path of length at most two has both ends in \mathcal{R}, then it is a subgraph of \mathcal{R},
(I5) no two vertices of degree two in G are adjacent, unless they belong to a vertex-like ring,
(I6) if Σ is the sphere and $|\mathcal{R}|=1$, or if G has an omnipresent face, then G does not contain an internal 2-cut,
(I7) the distance between every two distinct members of \mathcal{R} is at least four,
(I8) every cycle in G that does not separate the surface has length at least seven,
(I9) if a cycle C of length at most 9 in G bounds an open disk Δ in Σ, then Δ is a face, a union of a 5 -face and a $(|C|-5)$-face, or C is a 9 -cycle and Δ consists of three 5 -faces intersecting in a vertex of degree three.

Let G be a graph in a surface Σ with rings \mathcal{R} satisfying (I3). We say that a good configuration γ appears in (G, \mathcal{R}) if it faintly appears and the following conditions hold:

- \mathcal{I}_{γ} is disjoint from vertex-like rings,
- if γ is isomorphic to R3, then either \mathcal{I} contains a vertex of \mathcal{R} or there exists a vertex $v \in \mathcal{I}$ such that v and all its neighbors are internal,
- if γ is isomorphic to R4, then the vertex that corresponds to v_{2} is internal and has degree at least 4 , and neither x_{4} nor x_{5} belongs to a vertex-like ring,
- if γ is isomorphic to R 5 , then v_{4} is an internal vertex and the face whose boundary contains the path corresponding to $v_{6} v_{7} v_{8}$ has length at least seven,
- if γ is isomorphic to R6 or R6.1, then both vertices of \mathcal{A}_{γ} are internal, and all neighbors of at least one of them are internal,
- if γ is isomorphic to one of $\mathrm{R} 7, \mathrm{R} 7.1, \mathrm{R} 7.2, \mathrm{R} 7.3, \mathrm{R} 7.4$, then all vertices in $\mathcal{A}_{\gamma} \cup \mathcal{I}_{\gamma}$ and all their neighbors are internal, and
- if γ is isomorphic to R7, then the vertex corresponding to x_{8} and all its neighbors are internal.

Let G be a graph in a surface Σ with rings \mathcal{R}, and let M be a subgraph of G with no isolated vertices. We define the initial charge of the triple (G, Σ, \mathcal{R}) as follows. Every face f gets charge $|f|-4$. A ring vertex of degree two gets charge -1 if it belongs to M and $-1 / 3$ otherwise, a ring vertex of degree $d \geq 3$
gets charge $d-3$, and all internal vertices of degree d get charge $d-4$. Finally, we increase the charge of each face incident with an edge of M by $5 / 3$ and each ring vertex of degree two belonging to M by $2 / 3$.
Lemma 5.1. Let G be a graph in a surface Σ with rings \mathcal{R}, let g be the Euler genus of Σ, let M be a subgraph of G with no isolated vertices, and let n_{2} be the number of ring vertices of degree two that do not belong to M. Then the sum of initial charges of all vertices and faces of G is at most $4 g+4|\mathcal{R}|+2 n_{2} / 3+$ $10|E(M)| / 3-8$.

Proof. By Euler's formula, $|E(G)| \leq|V(G)|+|F(G)|+|\mathcal{R}|+g-2$. Let n_{r} denote the number of ring vertices. Note that in the last step of the definition of the initial charge, we increased the sum of charges by at most $10|E(M)| / 3$, since if v is a ring vertex of degree two belonging to M, then an edge of M incident with v is also incident with only one face of G. The sum of the initial charges of all vertices and faces is at most

$$
\begin{aligned}
& \sum_{v \in V(G)}(\operatorname{deg}(v)-4)+n_{r}+2 n_{2} / 3+\sum_{f \in F(G)}(|f|-4)+10|E(M)| / 3 \\
= & (2|E(G)|-4|V(G)|)+n_{r}+2 n_{2} / 3+\left(2|E(G)|-4|F(G)|-n_{r}\right)+10|E(M)| / 3 \\
= & 4(|E(G)|-|V(G)|-|F(G)|)+2 n_{2} / 3+10|E(M)| / 3 \\
\leq & 4 g+4|\mathcal{R}|+2 n_{2} / 3+10|E(M)| / 3-8,
\end{aligned}
$$

as desired.
A 5 -face f is k-dangerous if f is not incident with an edge of M and f is incident with exactly k internal vertices of degree three. Let $f_{1}=u v a w b$ be a 4-dangerous face, where w is the unique incident vertex that is not internal of degree three. Let f_{2} be the face incident with $u v$ distinct from f_{1}. We say that f_{2} is linked to f_{1} (through the edge uv). Let $x y$ be an edge such that y has degree three, and let g_{1}, g_{2}, g_{3} be the faces incident with y such that $x y$ is incident with g_{1} and g_{2}. Then the face g_{3} is opposite to x. A 4-dangerous face f is extremely 4 -dangerous if it is neither incident with a vertex of \mathcal{R} nor opposite to the main vertex of a vertex-like ring.

Let us apply the following primary discharging rules, resulting in the primary charge:

Rule 1: Every face sends $1 / 3$ to each incident ring vertex of degree two and each incident internal vertex of degree three.

Rule 2: If $u v w$ is a subpath of a ring, then v sends $1 / 3$ to each face incident with v other than the two faces incident with $u v$ and $u w$. Additionally, if v is the main vertex of a vertex-like ring, then v sends $1 / 3$ to each opposite face and receives $2 / 3$ from the face incident with the ring.

Rule 3: Let f be a face linked to an extremely 4-dangerous face f^{\prime} through an edge $u v$. If f has length at least 6 , or f is incident with an edge of M, then f sends $1 / 3$ to f^{\prime} across the edge $u v$.

Rule 4: Let $v_{1} v_{2} v_{3} v_{4}$ be a subwalk of the boundary walk of a face f^{\prime} of length at least seven, such that f^{\prime} is linked to extremely 4 -dangerous faces through both $v_{1} v_{2}$ and $v_{3} v_{4}$. Let f be the other face incident with the edge $v_{2} v_{3}$. If f has length at least six, then f sends $1 / 9$ to f^{\prime} across the edge $v_{2} v_{3}$.

Lemma 5.2. Let G be a graph in a surface Σ with rings \mathcal{R} satisfying (I0) and (I3) and let M be a subgraph of G. Then the primary charge of each vertex is non-negative, and the primary charge of a ring vertex of degree $d \geq 4$ is at least $(d-2) / 3$. Moreover, the primary charge of an internal vertex of degree $d \geq 4$ is exactly $d-4$.

Proof. By Rule 1, the internal vertices of degree three have primary charge 0. The charge of internal vertices of degree $d \geq 4$ is unchanged, i.e., $d-4 \geq 0$. Consider now a ring vertex v of degree d. If $d=2$, then the initial charge of v is $-1 / 3$ and v receives $1 / 3$ by Rule 1 . Observe that v sends nothing by Rule 2 , thus the primary charge of v is 0 . If $d \geq 3$, then v sends charge by Rule 2 to $d-3$ incident faces. Furthermore, if v is the main vertex of a vertexlike ring, then v sends $1 / 3$ to at most $d-2$ opposite faces and receives $2 / 3$ from the face incident with the ring. Hence, the primary charge of v is at least $d-3-\max ((d-3) / 3,(2 d-7) / 3)$, which is non-negative, and at least $(d-2) / 3$ for $d \geq 4$ as desired.

Let us now estimate the primary charge of faces. A subgraph $M \subseteq G$ captures (≤ 4)-cycles if M contains all cycles of G of length at most 4 and furthermore, M is either null or has minimum degree at least two.

Lemma 5.3. Let G be a graph in a surface Σ with rings \mathcal{R} satisfying (I0), (I1), (I3), (I4), (I5) and (I7), let M be a subgraph of G that captures (≤ 4)-cycles and assume that if a configuration isomorphic to one of R1, R2, ..., R5 appears in G, then it touches M. If f is a face of G, then the primary charge of f is non-negative. Furthermore, if the primary charge of f is zero, then f has length exactly five, it is not incident with an edge of M, and
(a) f is 3-dangerous, or
(b) f is incident with a ring vertex, or
(c) f is 4-dangerous and a face of length at least 6 is linked to f, or
(d) f is 4-dangerous, the face h linked to f has length five and h is incident with an edge of M, or
(e) f is 4-dangerous and is opposite to the main vertex of a vertex-like ring.

Otherwise, the primary charge of f is least $2 / 9$, and if $|f| \geq 8$, then the primary charge of f is at least $5|f| / 9-4$. Also, if f is a 6 -face incident with a ring vertex of degree two, then f has primary charge at least $2 / 3$.

Proof. Suppose first that f has length exactly five. The face f may send charge by Rules 1 and 3. Let us consider the case that f is incident with an edge of M. If f sends charge across an edge $u v$ by Rule 3 to a face f^{\prime}, then both u and v have degree three and no edge of f^{\prime} belongs to M. Since M has minimum degree at least two, it follows that no edge incident with u or v belongs to M;
hence f sends charge by Rule 3 to at most two faces. The primary charge of f is at least $1+5 / 3-5 / 3-2 / 3=1 / 3>2 / 9$.

Therefore, we may assume that f is not incident with any edge of M, and in particular, f does not share an edge with any cycle of length at most 4. Also, f sends charge only by Rule 1 . Let us distinguish several cases according to the number of internal vertices of degree three incident with f.

- All vertices incident with f are internal and have degree three. Then f and its incident vertices form a configuration isomorphic to R1 that appears in G, which is a contradiction.
- The face f is incident with exactly four internal vertices of degree three. Let $f=v_{1} v_{2} v_{3} v_{4} v_{5}$ and suppose that all these vertices except for v_{2} are internal and have degree three. If v_{2} is not internal, then v_{2} has degree at least four, since v_{1} and v_{3} are internal vertices. The charge of f after applying Rule 1 is $-1 / 3$.

The face f is incident with no edge of M, hence f is 4 -dangerous. If v_{2} belongs to a ring, then f receives $1 / 3$ by Rule 2 , making its charge zero, and hence f satisfies (b). Thus we may assume that v_{2} is internal and of degree at least 4. Similarly, if f is opposite to the main vertex of a vertex-like ring, then f receives $1 / 3$ by Rule 2 and f satisfies (e), hence it suffices to consider the case that f is extremely 4 -dangerous.

If the face h with that f shares the edge $v_{4} v_{5}$ has length five, then the faces f and h form an imprint of $\mathrm{R} 4\left(v_{2}\right.$ is distinct from the vertices incident with h, since f does not share an edge with a cycle of length at most 4), and a configuration isomorphic to R4 appears in G. By hypothesis the face h is incident with an edge of M.

We conclude that h either has length at least 6 or is incident with an edge of M. In both cases, h sends $1 / 3$ to f by Rule 3 . Thus the primary charge of f is zero, and f satisfies (c) or (d).

- The face f is incident with exactly three internal vertices of degree three. In this case f sends $1 / 3$ to each of the three incident internal vertices of degree three by Rule 1 , making its charge zero. (The face f is not incident with a ring vertex of degree two, since both neighbors of such a vertex belong to \mathcal{R}). Since f does not share an edge with M, f is 3 -dangerous and satisfies (a).
- The face f is incident with exactly two internal vertices of degree three. Then f sends $1 / 3$ to each of them, and at most $1 / 3$ to a ring vertex of degree two by Rule 1, making its charge non-negative. Furthermore, if the charge is zero, then f satisfies (b); otherwise the charge is at least $1 / 3$, as desired.
- The face f is incident with at most one internal vertex of degree three. Then f sends at most $2 / 3$ by Rule 1 and (I5), and its primary charge is at least $1 / 3$, as desired.

Thus we have proved the lemma when f has length five. Let us now consider the case that f has length six, and let $f=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$. By (I1) not all vertices
incident with f are internal and of degree three. Thus f sends at most $5 / 3$ by Rule 1 and at most $4 / 3$ by Rules 3 and 4 ; furthermore, if f sends $2 / 3$ by Rule 2 (i.e., a vertex-like ring forms part of the boundary of f), then f sends at most $4 / 3$ by Rule 1 and at most $1 / 3$ by Rules 3 and 4 . If f is incident with an edge of M, then its primary charge is at least $2+5 / 3-5 / 3-4 / 3=2 / 3$, as desired, and so we may assume that f is incident with no edge of M. Since M captures (≤ 4)-cycles, it follows that no edge of f is incident with a vertex-like ring.

If, say, v_{1} is the main vertex of a vertex-like ring, then (I7) implies that all other vertices incident with f are internal. Also, observe that for each of the edges $v_{1} v_{2}, v_{1} v_{6}, v_{2} v_{3}$ and $v_{5} v_{6}$, either not both ends of the edge are internal vertices of degree three, or the edge is not incident with an extremely 4-dangerous face; hence, f sends at most $2 / 3$ by Rule 3 and nothing by Rule 4 . Furthermore, f receives $1 / 3$ from v_{1} by Rule 2, and thus the primary charge of f is at least $2-5 / 3-2 / 3+1 / 3=0$. If f sends less than $5 / 3$ by Rule 1 or less than $2 / 3$ by Rule 3 , then the primary charge is at least $1 / 3$, as desired. Otherwise, f forms an appearance of $\gamma=\mathrm{R} 3$, with $\mathcal{I}_{\gamma}=\left\{v_{2}, v_{4}, v_{6}\right\}$, contradicting the hypothesis of the lemma. Therefore, no vertex incident with f is the main vertex of a vertex-like ring.

Suppose that f sends charge across $v_{2} v_{3}$ by Rule 3 or 4 . It follows that v_{2} and v_{3} are internal and of degree three. Let x_{2} be the neighbor of v_{2} other than v_{1} and v_{3}, and let x_{3} be defined analogously. Then both x_{2} and x_{3} are internal vertices of degree three. If v_{1} and v_{5} both belong to \mathcal{R}, then by (I4) v_{6} is a vertex of degree two, and by (I4) and (I5) v_{4} is an internal vertex, implying that $\gamma=$ R3 appears in G (with $\mathcal{I}_{\gamma}=\left\{v_{2}, v_{4}, v_{6}\right\}$). This contradicts the hypothesis; hence, assume that at least one of v_{1} and v_{5} is internal, and symmetrically, at least one of v_{4} and v_{6} is internal. If both v_{1} and v_{5} are internal, then then $\gamma=\mathrm{R} 3$ appears in G with $\mathcal{I}_{\gamma}=\left\{v_{2}, v_{4}, v_{6}\right\}$. And if exactly one of v_{1} and v_{5} belongs to \mathcal{R}, then $\gamma=\mathrm{R} 3$ appears in G with $\mathcal{I}_{\gamma}=\left\{v_{1}, v_{3}, v_{5}\right\}$. This is a contradiction, showing that f does not send charge across $v_{2} v_{3}$ by Rule 3 or 4 .

By symmetry, f does not send charge using Rules 3 or 4 at all, and thus its primary charge is at least $2-5 / 3=1 / 3$. Furthermore, if some vertex incident with f, say v_{2}, has degree two and belongs to a ring R, then by (I5), v_{1} and v_{3} belong to R and have degree at least three, and thus f sends at most $4 / 3$ by Rule 1 , and the primary charge of f is at least $2 / 3$. This completes the case $|f|=6$.

Finally, we consider the case that $|f| \geq 7$. Let us estimate the amount of charge sent from f and received by f using Rules 3 and 4 . If $v_{1} v_{2} v_{3} v_{4}$ is a subwalk of the boundary walk of f and f sends $1 / 3$ across $v_{2} v_{3}$ by Rule 3 , then assign $1 / 9$ of this charge to each of $v_{1} v_{2}, v_{2} v_{3}$ and $v_{3} v_{4}$. If f sends $1 / 9$ across $v_{2} v_{3}$ by Rule 4 , then add $1 / 9$ to the charge assigned to $v_{2} v_{3}$; if f receives $1 / 9$ across $v_{2} v_{3}$, then remove $1 / 9$ from the charge assigned to $v_{2} v_{3}$. We claim that each edge has at most $1 / 9$ assigned to it, and hence that f loses at most $|f| / 9$ by Rules 3 and 4.

Suppose for a contradiction that more than $1 / 9$ is assigned to the edge $v_{2} v_{3}$. By symmetry, we can assume that f sends charge by Rule 3 to the face f_{12}
across $v_{1} v_{2}$. Let $f_{23} \neq f$ be the face incident with the edge $v_{2} v_{3}$. If f sends charge across $v_{2} v_{3}$ by Rule 3 , then the faces f_{12} and f_{23} form an appearance of a configuration isomorphic to R 5 . It follows that f_{12} or f_{23} is incident with an edge of M. This is a contradiction, because Rule 3 sends charge to 4 -dangerous faces only. Furthermore, f does not send charge across $v_{2} v_{3}$ by Rule 4 , because f is linked to f_{12} through $v_{1} v_{2}$.

Since more than $1 / 9$ is assigned to $v_{2} v_{3}$, it follows that f sends charge across $v_{3} v_{4}$ by Rule 3 and does not receive charge by Rule 4 across $v_{2} v_{3}$. Therefore, f_{23} has length five and f_{12} and f_{23} form an appearance of a configuration isomorphic to R5 as before. Since f_{12} is 4-dangerous, some edge of M is incident with f_{23} but not with f_{12}. Since all neighbors of v_{2} and v_{3} have degree three and M has minimum degree at least two, it follows that some edge of M is incident with the face $f_{34} \neq f$ that is incident with $v_{3} v_{4}$. This is a contradiction, because f sends charge to f_{34} by Rule 3 .

We can now bound the primary charge of f. If f has length at least eight, then f sends at most $|f| / 3$ by Rule 1 and at most $|f| / 9$ by Rules 3 and 4 (and any charge sent by Rule 2 is dominated by the charge received due to sharing an edge with M); thus its primary charge is at least $|f|-4-|f| / 3-|f| / 9=$ $5|f| / 9-4>2 / 9$, as desired.

Finally, assume that f has length exactly seven. If f is incident with an edge of M, then f sends at most $7 / 3$ by Rule 1 , making the primary charge of f at least $3+5 / 3-7 / 3-7 / 9=14 / 9$. If f is incident with no edge of M, then f and its incident vertices do not form an appearance of a configuration isomorphic to R 2 , and that in turn implies that f is incident with no more than six internal vertices of degree three. Thus f sends at most 2 by Rule 1, and hence the primary charge of f is at least $3-2-7 / 9=2 / 9$, as desired.

We now modify the primary charges using three additional rules into what we will call "final charges". A vertex is safe if its degree is at least five, or if it belongs to \mathcal{R}, or if it is incident with a face with strictly positive primary charge. A face f is k-reachable from a vertex v if there exists a path P of length at most k (P may have length zero), joining v to a vertex incident with f, such that no vertex of $P \backslash v$ is safe. In particular, every vertex of $P \backslash v$ is internal and has degree at most four, and all faces incident with them have length 5 , which implies that the number of faces that are 3-reachable from a vertex of degree d is bounded by $20 d$ (see Figure 2 demonstrating the worst case). Furthermore, if v is a ring vertex or an internal vertex incident to a face f with strictly positive primary charge, then two of the neighbors of v are safe, and we conclude that at most $20(d-3)+26$ faces distinct from f are 3-reachable from v.

Let $\epsilon>0$ be a real number, to be specified later. Starting from the primary charges we now apply the following three rules, resulting in the final charge:

Rule 5: The charge of each ring vertex of degree three is increased by 26ϵ.
Rule 6: Each face of strictly positive primary charge sends 46ϵ units of charge to each incident vertex.

Figure 2: The maximum number of 3 -reachable faces (case $d=4$).

Rule 7: If v is a safe vertex of degree at least three, then v sends a charge of ϵ to each face of zero primary charge that is 3 -reachable from v.

Lemma 5.4. Let G be a graph in a surface Σ with rings \mathcal{R}, let g be the Euler genus of Σ, let M be a subgraph of G that captures (≤ 4)-cycles, let n_{2} be the number of ring vertices of degree two not belonging to M, let n_{3} be the number of ring vertices of degree three, let $\epsilon>0$, and let M be a subgraph of G. Then the sum of final charges of all vertices and faces of G is at most $4 g+4|\mathcal{R}|+26 \epsilon n_{3}+2 n_{2} / 3+10|E(M)| / 3-8$.

Proof. This follows directly from Lemma 5.1 and the description of the discharging rules.

Lemma 5.5. Let G, Σ, \mathcal{R}, and M be as in Lemma 5.3, and let $\epsilon \leq 1 / 180$. Then the final charge of every vertex is non-negative and the final charge of every ring vertex of degree $d \geq 4$ is at least $(1 / 3-20 \epsilon)(d-2)-26 \epsilon$.

Proof. Let v be a vertex of G of degree d. Lemma 5.2 tells us that the primary charge of v is non-negative. If v is safe, then it sends at most $20 \epsilon d$ units of charge by Rule 7 ; otherwise it sends nothing using Rules 5-7. Assume first that v is an internal vertex. If $d \geq 5$, then the primary charge of v is $d-4$, and its final charge is at least $d-4-20 \epsilon d$, which is non-negative by the choice of ϵ. If $d \leq 4$ and v is not incident with a face of positive primary charge, then its final charge is the same as its primary charge, and so the conclusion follows from Lemma 5.2. If $d \leq 4$ and v is incident with a face of positive primary charge,
then it receives at least 46ϵ units of charge using Rule 6 and sends at most 46ϵ units using Rule 7. Thus v has non-negative final charge.

Let us now assume that v is a ring vertex. If $d=2$, then v sends no charge by Rules $5-7$ and its final charge is zero. If $d=3$, then v receives 26ϵ units using Rule 5 , and sends at most 26ϵ units using Rule 7. Finally, if $d \geq 4$, then v has primary charge at least $(d-2) / 3$ by Lemma 5.2 , and it sends at most $20(d-3) \epsilon+26 \epsilon$ units of charge, and hence its final charge is at least $(1 / 3-20 \epsilon)(d-3)+1 / 3-26 \epsilon$, which is non-negative by the choice of ϵ.

Lemma 5.6. Let G, Σ, \mathcal{R}, and M be as in Lemma 5.3, and let $\epsilon>0$ be arbitrary. Then the final charge of every face of length six or seven is at least $2 / 9-322 \epsilon$, and the final charge of every face of length $l \geq 8$ is at least $(5 / 9-$ $46 \epsilon) l-4$.

Proof. Lemma 5.3 gives a lower bound on the primary charge of a face f, and f sends at most $46 \epsilon|f|$ units of charge using Rule 6.

Lemma 5.7. Let G, Σ, \mathcal{R}, and M be as in Lemma 5.3, satisfying additionally (I8), and assume that if a configuration isomorphic to one of R1, R2,..., R6 or R7 appears in G, then it touches M. Then every face of zero primary charge is 3 -reachable from some safe vertex.

Proof. Let f be a face of zero primary charge. Lemma 5.3 implies that f is a 5 -face, and unless f is 1-reachable from a safe vertex, we have that f is 3 dangerous and all vertices incident with f are internal and have degree at most four. Let $f=w_{1} w_{2} w_{3} w_{4} w_{5}$, and suppose first that w_{1} and w_{5} have degree four. In this case, we prove the following stronger claim: both w_{1} and w_{5} are at distance at most two from a safe vertex.

Let f^{\prime} be the other face incident with the edge $w_{1} w_{5}$. To prove the claim we may assume that no vertex incident with f or f^{\prime} is safe, for otherwise the claim holds. Then f^{\prime} has primary charge zero, because no vertex incident with f is safe. Since w_{1} and w_{5} have degree at least four, Lemma 5.3 implies that f^{\prime} is 3 -dangerous. Since f and f^{\prime} have zero primary charge, they do not share an edge with M, and in particular, they do not share an edge with any cycle of length at most four. We deduce that the faces f and f^{\prime} and their incident vertices form a faint appearance of a configuration isomorphic to R6. Since f and f^{\prime} are incident with no edge of M, this is not an appearance; hence either w_{1} or w_{5} has a neighbor in \mathcal{R}, or the distance from both w_{1} and w_{5} to a vertex of \mathcal{R} is most two. In both cases, w_{1} and w_{5} are at distance at most two from a safe vertex, as desired. This concludes the case when w_{1} and w_{5} have degree four.

We may therefore assume that w_{1} and w_{3} have degree four. Let $f_{1}, f_{2}, f_{3}, f_{4}$ and f_{5} be the other faces incident with the edges $w_{1} w_{2}, w_{2} w_{3}, w_{3} w_{4}, w_{4} w_{5}$ and $w_{5} w_{1}$, respectively. Similarly as before we may assume that $f_{1}, f_{2}, f_{3}, f_{4}$ and f_{5} are all 3 -dangerous 5 -faces and vertices incident with them have degree at
most four, for otherwise f is 3 -reachable from a safe vertex. If any of those faces contained two consecutive vertices x and y of degree four, then by the previous paragraph, both x and y would be at distance at most two from a safe vertex, and hence f would be 3 -reachable from such a safe vertex. We may therefore assume that this is not the case. Since no cycle of length at most 4 shares an edge with f or f_{i} for $1 \leq i \leq 5$, we deduce that the faces $f, f_{1}, f_{2}, f_{3}, f_{4}, f_{5}$ and their incident vertices and edges form a faint appearance of a configuration γ isomorphic to R 7 , unless f_{3} and f_{5} are incident with a common vertex, i.e., unless v_{4} is identified with v_{9}, or v_{5} is identified with v_{10} in the depiction of R7 in Figure 1. Suppose that say $v_{4}=v_{9}$. Since this vertex has degree three, we conclude that $\left\{v_{3}, v_{5}\right\} \cap\left\{v_{8}, v_{10}\right\} \neq \emptyset$. As f does not share an edge with M, we have $v_{3} \neq v_{8}, v_{3} \neq v_{10}$ and $v_{5} \neq v_{8}$. However, if $v_{5}=v_{10}$, then the cycle $v_{5} v_{6} v_{12} v_{11} v_{1}$ does not separate the surface, contrary to (I8).

It follows that R7 faintly appears, but does not appear, in G. Thus, using the labeling of the vertices as in Figure 1, one of $x_{1}, x_{3}, x_{6}, x_{7}, x_{8}$ or one of their neighbors belongs to \mathcal{R}. Therefore, f is 3 -reachable from a safe vertex, as desired.

Lemma 5.8. Let G, Σ, \mathcal{R}, and M be as in Lemma 5.7, let $\epsilon \leq 2 / 2079$, and assume that if a good configuration appears in G, then it touches M. Then the final charge of every face of length five is at least ϵ.

Let us remark that $2079=9(5 \cdot 46+1)$.
Proof. Let f be a face of length five. If f has positive primary charge, then by Lemma 5.3 it has primary charge at least $2 / 9$. It sends 46ϵ units of charge to each incident vertex by Rule 6 , and hence f has final charge at least $2 / 9-5 \cdot 46 \epsilon \geq \epsilon$.

We may therefore assume that f has primary charge zero. By Lemma 5.7, f is 3 -reachable from some safe vertex, and hence has final charge at least ϵ because of Rule 7, as desired.

Let $s:\{5,6, \ldots\} \rightarrow \mathbb{R}$ be a function (that we specify later) satisfying
(S1) $s(5)=2 \epsilon$,
(S2) $s(7) \leq 4 / 9-644 \epsilon$, and
(S3) $s(l) \leq(10 / 9-92 \epsilon) l-8$ for every integer $l \geq 8$.
Suppose that we are given such a function and a graph G in Σ with rings \mathcal{R}. For a face f of G, we define $w(f)=s(|f|)$ if f is open 2-cell, and $w(f)=|f|$ otherwise. We define $w(G, \mathcal{R})$ as the sum of $w(f)$ over all faces f of G.
Lemma 5.9. Let G be a graph in a surface Σ with rings \mathcal{R} satisfying (I0)(I8), let M be a subgraph of G that captures (≤ 4)-cycles and assume that if a configuration isomorphic to one of $\mathrm{R} 1, \mathrm{R} 2, \ldots, \mathrm{R} 7$ appears in G, then it touches M. Let ϵ be a real number satisfying $0<\epsilon<2 / 2079$, and let $s:\{5,6, \ldots\} \rightarrow \mathbb{R}$ be a function satisfying (S1)-(S3). Then the final charge of every vertex is non-negative, and the final charge of every face f is at least $s(|f|) / 2$.

Proof. The assertions follow from Lemmas 5.5, 5.6 and 5.8 using conditions (S1)-(S3).

Lemma 5.10. Let $G, \Sigma, \mathcal{R}, M, \epsilon$, and s be as in Lemma 5.9, and let g, n_{2}, and n_{3} be as in Lemma 5.4. Then $w(G, \mathcal{R}) \leq 8 g+8|\mathcal{R}|+52 \epsilon n_{3}+4 n_{2} / 3+$ $20|E(M)| / 3-16$.

Proof. By Lemma 5.9 the quantity $w(G, \mathcal{R})$ is at most twice the sum of the final charges of all vertices and faces of G, and hence the lemma follows from Lemma 5.4.

We need the following refinement of the previous lemma.
Lemma 5.11. Let $G, \Sigma, \mathcal{R}, M, \epsilon$, and s be as in Lemma 5.9, and let g, n_{2}, and n_{3} be as in Lemma 5.4. Then $w(G, \mathcal{R}) \leq 8 g+8|\mathcal{R}|+52 \epsilon n_{3}+4 n_{2} / 3+$ $20|E(M)| / 3-8 b / 9-16$, where b is the number of 6 -faces of G incident with a ring vertex of degree two, plus the number of ring vertices of degree at least four.

Proof. This follows similarly as Lemma 5.10, since according to Lemma 5.3, each 6 -face incident with a ring vertex of degree two has charge by at least 4/9 higher than the bound used to derive Lemma 5.10, and since the final charge of a ring vertex of degree at least four is at least $2 / 3-46 \epsilon>4 / 9$.

6 Reductions

In this section, we argue that subject to a few assumptions, reducing a good configuration does not create cycles of length at most four.

Let G be a graph in a surface Σ with rings \mathcal{R}, and let P be a path of length at most four with ends $u, v \in V(\mathcal{R})$ and otherwise disjoint from \mathcal{R}. We say that P is allowable if

- u, v belong to the same ring of \mathcal{R}, say R,
- P has length at least three,
- there exists a subpath Q of R with ends u, v such that $P \cup Q$ is a cycle of length at most eight that bounds an open disk $\Delta \subset \Sigma$,
- if P has length three, then $P \cup Q$ has length five and Δ is a face of G, and
- if P has length four, then Δ includes at most one edge of G, and if it includes such an edge e, then Q has length four and e joins the middle vertex of P to the middle vertex of Q.

We say that G is well-behaved if every path P of length at least one and at most four with ends $u, v \in V(\mathcal{R})$ and otherwise disjoint from \mathcal{R} is allowable.

We say that a configuration γ strongly appears in G if it both appears and weakly appears in G and

- if $u, v \in \mathcal{A}_{\gamma}$ are distinct, then at least one of u, v is internal,
- if $u, v \in \mathcal{I}_{\gamma}$ are distinct, $u \in V(\mathcal{R})$, and $w \in V(\mathcal{R})$ is a neighbor of v, then u and w are adjacent and $u w, w v \in E\left(G_{\gamma}\right)$, and
- if γ is isomorphic to R7, then the vertices corresponding to v_{2} and z are distinct, non-adjacent and have no common neighbor distinct from v_{1}, v_{3}, x_{6} and x_{7}.
Lemma 6.1. Let G be a graph in a surface Σ with rings \mathcal{R} satisfying (I0), (I2) and (I8), and assume that G is well-behaved. If a configuration isomorphic to one of $\mathrm{R} 1, \mathrm{R} 2, \ldots, \mathrm{R} 7$ appears in G and no cycle in G of length four or less touches it, then either a good configuration strongly appears in G, or Σ is a disk, $\mathcal{R}=\{R\}, R$ has length $2 s$ for some $s \in\{5,7\}, V(G)=V(R) \cup V(C)$ for a cycle C of length s, and each vertex of C is internal of degree three and has one neighbor in R.

Proof. Let γ be a good configuration appearing in G, such that no cycle in G of length four or less touches γ. If possible, we choose γ so that it is equal to one of R1, R6.1, R7.1, R7.2, R7.3 or R7.4. We claim that, possibly after relabeling the vertices of G_{γ}, γ strongly appears in G. To prove that we first notice that the first condition of weak appearance holds by hypothesis and (I8) -if $x_{3}=x_{7}$, then $x_{3} v_{3} v_{12} v_{6} v_{7}$ is a 5 -cycle separating x_{1} from x_{6}. The third condition is implied by appearance. The second condition of weak appearance follows from our choice of γ and the fact that no cycle of length at most four touches γ. For example, if γ is R7, then v_{2} and v_{7} are not adjacent, because R7.1 does not appear in G by the choice of γ. Additionally, when γ is R5, we use (I2) to show that v_{1} is not adjacent to v_{5}.

It remains to prove that γ satisfies the conditions of strong appearance. Let us discuss the configurations separately. If γ is R1 or R2, it suffices to show that we can choose the labels of the vertices of γ so that x_{1} is internal. If that is not possible, then each vertex of γ is adjacent to a vertex belonging to \mathcal{R}. Since G is well-behaved it follows that there exists a ring $R \in \mathcal{R}$ that satisfies the conclusion of the lemma for $s=5$ if γ is R1 and for $s=7$ when γ is R2.

If γ is R3, we only need to prove the second condition of strong appearance. Suppose that say $v_{3} \in V(\mathcal{R})$ and v_{5} has a neighbor x_{5} in \mathcal{R} other than v_{4}. Since G is well-behaved, v_{4} is an internal vertex and $v_{3} v_{4} v_{5} x_{5}$ together with a path in \mathcal{R} bound a 5 -face, implying that v_{4} has degree two. This contradicts (I0).

If γ is R 4 , then note that the path $x_{1} v_{1} v_{2} v_{3} x_{3}$ is not allowable, since by the definition of appearance, v_{2} has degree at least four. Therefore, at least one of x_{1} and x_{3} is internal, and γ strongly appears.

If γ is R5, we need to prove the first and the second condition of strong appearance. For the first one, observe that the path $v_{2} v_{1} v_{8} x_{8}$ is not allowable, since v_{1} has degree at least three. For the second condition, since γ appears in G, we have that v_{4} is internal; thus it suffices to consider the case that x_{6} and a neighbor x_{4} of v_{4} belongs to \mathcal{R}. Since $v_{3} v_{4} v_{5} v_{6} v_{7}$ is not an appearance of R1 in G, v_{4} has degree at least four, and thus the paths $v_{2} v_{3} v_{4} x_{4}$ and $x_{4} v_{4} v_{5} v_{6} x_{6}$ cannot both be allowable. It follows that v_{2} is internal, and similarly all neighbors of v_{2} are internal. However, then we can relabel the vertices of γ, switching v_{2} with v_{4}, v_{6} with v_{8}, etc., and obtain a strong appearance of R5 in G.

For the configurations R6, ... R7.4, the first two conditions follow from the definition of appearance. Therefore, suppose that γ is R 7 and let us now consider the last condition in the definition of strong appearance. Again, we we use symmetry: if the condition does not hold for γ we swap v_{1} and v_{3}, v_{6} and v_{8}, and so on. The vertex v_{2} cannot be equal to or adjacent to both z and z_{1}, since $v_{2} \neq x_{7}$ (otherwise, R7.1 would appear in G), x_{7} has degree at least three and no cycle of length at most four touches γ. Unless the condition holds, we can assume that $z_{1} \neq v_{2}, z_{1}$ is not adjacent to v_{2} and that z_{1} and v_{2} have a common neighbor x_{2} distinct from v_{1}, v_{3}, x_{7} and x_{8}. Since no cycle of length at most four touches γ, we have $z \notin\left\{v_{2}, v_{3}, x_{2}\right\}$. If $z=v_{1}$, then the cycle $K=v_{1} v_{11} v_{8} v_{7} x_{7}$ separates z_{1} from v_{2} by (I8), and thus $x_{2} \in V(K)$. This is a contradiction, since then a cycle of length at most four touches γ. Therefore, z is distinct from and non-adjacent to v_{2}. Furthermore, z is not adjacent to x_{2}, as otherwise $x_{2} z x_{7} z_{1}$ touches γ.

Let G be a graph in a surface Σ with rings \mathcal{R}, let γ be a good configuration that weakly appears in G, let G^{\prime} be the γ-reduction of G, and let C^{\prime} be a cycle in G^{\prime}. If C is a cycle in G such that either $C=C^{\prime}$ or C^{\prime} is obtained from C by replacing a squashed edge by one of the corresponding edges of G, then we say that C is a lift of C^{\prime}.

Lemma 6.2. Let G be a graph in a surface Σ with rings \mathcal{R} satisfying (I0), (I3), (I8) and (I9), let γ be a good configuration that strongly appears in G, and let G^{\prime} be the γ-reduction of G with respect to a 3-coloring ϕ of \mathcal{R}. If C^{\prime} is a cycle in G^{\prime} of length at most four, then either a lift of C^{\prime} is a cycle in G, or C^{\prime} is noncontractible and there exists a noncontractible cycle C in G such that C touches γ and $|C|-\left|C^{\prime}\right| \leq 3$. Furthermore, all ring vertices of C^{\prime} belong to C; and if C^{\prime} is a triangle disjoint from the rings and its vertices have distinct pairwise non-adjacent neighbors in a ring R of length 6 , then G contains edges $c r$ and $c^{\prime} r^{\prime}$ with $c, c^{\prime} \in V(C) \backslash V(R)$ and $r, r^{\prime} \in V(R) \backslash V(C)$ such that r and r^{\prime} are non-adjacent.

Proof. Suppose that $C^{\prime} \subseteq G^{\prime}$ is a cycle of length 3 or 4 such that no lift of C^{\prime} is a cycle in G. Let us discuss the possible configurations γ :

- γ is isomorphic to one of R1, R2, R6, R6.1, R7.1, R7.2, R7.3 or R7.4, or to R4 and both x_{4} and x_{5} belong to \mathcal{R} and $\phi\left(x_{4}\right)=\phi\left(x_{5}\right)$. We are adding an edge e between vertices $x, x^{\prime} \in \mathcal{A}_{\gamma}$ along the replacement path $P \subset G$ of length at most 4. Note that $e \in E\left(C^{\prime}\right)$. Let $C \subseteq G$ be the cycle obtained from C^{\prime} by replacing e with P. Clearly, $|C| \leq\left|C^{\prime}\right|+3 \leq 7$. Let us remark that C is indeed a cycle (i.e., if γ is R 4 , then $v_{2} \notin V\left(C^{\prime}\right)$), since no non-ring cycle of length at most four touches γ by the definition of weak appearance. Note that P is not a part of a boundary of a face in any of the configurations; thus C does not bound a face in G. By (I9), C is not contractible; hence C^{\prime} is not contractible, either.
- γ is R3: Let w be the vertex of G^{\prime} obtained by identifying v_{1} with v_{3} and v_{5}. Note that $w \in V\left(C^{\prime}\right)$ and consider the edges $e_{1}, e_{2} \in E\left(C^{\prime}\right)$ incident
with w. Unless C^{\prime} corresponds to a cycle of length $\left|V\left(C^{\prime}\right)\right|$ in G, e_{1} and e_{2} are incident with distinct vertices $a, b \in \mathcal{I}_{\gamma}$, and the cycle C obtained from C^{\prime} by adding the replacement path avb between a and b has length at most $\left|C^{\prime}\right|+2 \leq 6$. Note that C^{\prime} and C have the same homotopy. Suppose that they are contractible. By (I9) that implies that C^{\prime} bounds a face h and v has degree two. By (I0), v belongs to \mathcal{R}; however, this is not possible, since at least one of a and b is an internal vertex. This is a contradiction.
- γ is R4 and at least one of x_{4} and x_{5} is internal: Let w be the vertex obtained by identifying x_{4} and x_{5}. If $x_{1} x_{3}$ is not an edge of C^{\prime}, then (since C^{\prime} is not a cycle of G) the cycle C obtained from C^{\prime} by replacing w by the path $x_{4} v_{4} v_{5} x_{5}$ satisfies $6 \leq|C| \leq 7$ and does not bound a face; thus neither C nor C^{\prime} is contractible. Let us assume that $x_{1} x_{3} \in E\left(C^{\prime}\right)$. Similarly, we deal with the case that $w \notin V\left(C^{\prime}\right)$ or that both edges incident with w in C^{\prime} correspond to edges incident to one of x_{4} and x_{5}.
Suppose now that the neighbors of w in C^{\prime} are adjacent to x_{4} and x_{5}. Since no non-ring cycle of length at most four touches γ by the definition of weak appearance, we have $x_{1} x_{5}, x_{3} x_{4} \notin E(G)$; thus by symmetry we may assume that $x_{1} x_{4} \in E\left(C^{\prime}\right)$ and x_{3} and x_{5} are joined by a path P of length at most two in C^{\prime}. By (I8), the 5 -cycle $K=x_{1} v_{1} v_{5} v_{4} x_{4}$ separates x_{3} from x_{5}; thus P is not disjoint from K. However, then a cycle of length at most four touches γ.
- γ is R4, neither x_{4} nor x_{5} is internal and $\phi\left(x_{4}\right) \neq \phi\left(x_{5}\right)$: Let w be the vertex created by identifying v_{2} and x_{5}. The claim of the lemma follows by considering the non-facial cycle C obtained from C^{\prime} by replacing w with $v_{2} v_{1} v_{5} x_{5}$.
- γ is R5: Let w be the vertex obtained by identifying v_{4} and x_{6}. Let C be the cycle obtained from C^{\prime} by replacing $v_{2} x_{8}$ by $v_{2} v_{1} v_{8} x_{8}$ or w by $v_{4} v_{5} v_{6} x_{6}$ or both. If we performed at most one replacement, then $|C| \leq\left|C^{\prime}\right|+3$ and the claim follows from (I9).
Otherwise, $v_{2} x_{8} \in E\left(C^{\prime}\right)$ and $w \in V\left(C^{\prime}\right)$, and since no non-ring cycle of length at most four touches γ, there exist paths P_{1} between v_{2} and x_{6} and P_{2} between v_{4} and x_{8} of total length at most three. Let K_{1} be the cycle consisting of $v_{2} v_{3} v_{7} v_{6} x_{6}$ and P_{1} and K_{2} the cycle consisting of $v_{4} v_{3} v_{7} v_{8} x_{8}$ and P_{2}, and by symmetry assume that $\left|K_{1}\right|=5$ and $\left|K_{2}\right| \leq 6$. By (I8) the cycle K_{1} separates v_{4} from v_{8}; thus P_{2} intersects K_{1}. However, that contradicts the fact that no non-ring cycle of length at most four touches γ.
- γ is R7: Let w be the vertex obtained by identifying x_{6} and x_{7}. Let C_{1} be the cycle obtained from C^{\prime} by replacing $x_{1} x_{3}$ by $x_{1} v_{1} v_{2} v_{3} x_{3}$ or w by $x_{6} v_{6} v_{7} x_{7}$ or both. If we performed only one replacement, then $\left|C_{1}\right|=$ $\left|C^{\prime}\right|+3$ and the claim of the lemma follows from (I9), with $C=C_{1}$.
Otherwise, let C_{2} be the closed walk obtained from C_{1} by replacing $x_{6} v_{6} v_{7} x_{7}$ by $x_{6} z x_{7}$; we have $\left|C_{2}\right|=\left|C^{\prime}\right|+5 \leq 9$. Since γ appears, observe that all
vertices of C^{\prime} are internal and at most one of them has a neighbor in a ring. Note that C_{2} is a cycle, since otherwise a non-ring cycle of length at most four touching γ is a subgraph of C_{2}. Suppose now that C_{2} consists of $x_{1} v_{1} v_{2} v_{3} x_{3}$, a path P_{1} from x_{3} to x_{7}, the path $x_{7} z x_{6}$ and a path P_{2} from x_{6} to x_{1}, where the total length of P_{1} and P_{2} is at most three. Let K_{1} be the cycle consisting of P_{1} and $x_{3} v_{3} v_{12} v_{6} v_{7} x_{7}$ and K_{2} the cycle consisting of P_{2} and $x_{1} v_{1} v_{11} v_{12} v_{6} x_{6}$. Note that $\min \left(\left|K_{1}\right|,\left|K_{2}\right|\right) \leq 6$, and by (I8), the shorter of the two cycles is separating. It follows that K_{1} and K_{2} intersect in a vertex distinct from v_{12} and v_{6}. This is a contradiction, since the vertices of C_{2} are mutually distinct and none of them is equal to $v_{7}, v_{11} \notin V\left(G^{\prime}\right)$.
Therefore, C_{2} consists of $x_{1} v_{1} v_{2} v_{3} x_{3}$, a path Q_{1} of length $l_{1} \geq 1$ from x_{3} to x_{6}, the path $x_{6} z x_{7}$ and a path Q_{2} of length l_{2} from x_{7} to x_{1}, where $l_{1}+l_{2} \leq 3$. Let L_{1} be the cycle consisting of Q_{1} and $x_{3} v_{3} v_{12} v_{6} x_{6}$ and L_{2} the cycle consisting of Q_{2} and $x_{1} v_{1} v_{11} v_{8} v_{7} x_{7}$. Note that neither L_{1} nor L_{2} bounds a face, $\left|L_{1}\right|=4+l_{1} \leq 7$ and $\left|L_{2}\right|=5+l_{2} \leq 7$, thus by (I9) neither L_{1} nor L_{2} is contractible. Furthermore, $\left|L_{1}\right|+\left|L_{2}\right| \leq 9+l_{1}+l_{2} \leq 12$, thus there exists a cycle $C \in\left\{L_{1}, L_{2}\right\}$ of length at most $6 \leq\left|C^{\prime}\right|+3$ touching γ.
Let us now show that the cycle C^{\prime} is not contractible. Assume for a contradiction that C^{\prime}, and hence also C_{2}, is contractible. Let $\Delta \subseteq \Sigma$ be an open disk bounded by C_{2}. Note that Δ does not consist of a single face, since at least one edge incident with v_{1} or v_{2} lies inside Δ. By (I9), Δ consists of two or three faces, and in the latter case, $\left|C_{2}\right|=9$ and three vertices of C_{2} have a common neighbor.
It follows that $v_{11}, v_{12} \notin \Delta$, and thus the edge joining v_{2} with its neighbor $x_{2} \notin\left\{v_{1}, v_{3}\right\}$ lies in Δ. Since γ appears strongly in G, we have that $x_{2} \neq z$ and that z is an internal vertex. We conclude that $\operatorname{deg}(z)=3$ and z has a neighbor inside Δ distinct from x_{6} and x_{7}. By (I3) and (I9), this neighbor is equal to x_{2}. However, this contradicts the assumption that γ appears strongly in G.

If γ is R 7 and C is one of the cycles L_{1} and L_{2}, then since γ appears in G, the vertices $x_{1}, x_{3}, x_{6}, x_{7}$ and all their neighbors in G are internal. Consequently, x_{1}, x_{3} and all their neighbors are internal in G^{\prime}. It follows that C^{\prime} contains no ring vertex, and that at most two distinct ring vertices have a neighbor in C^{\prime}, hence the last claim of the lemma holds trivially.

Otherwise, C is obtained from C^{\prime} by replacing a new edge by a path in G, or by adding a replacement path between vertices of \mathcal{I}_{γ}, or both. Therefore, every ring vertex of C^{\prime} also belongs to C. Suppose that C^{\prime} is a triangle whose vertices c_{1}, c_{2} and c_{3} are internal, that $R=r_{1} r_{2} r_{3} r_{4} r_{5} r_{6}$ is a ring and that $c_{1} r_{1}, c_{2} r_{3}$ and $c_{3} r_{5}$ are edges of G^{\prime}. If, say, r_{1} has no neighbor in C, then either $r_{1} c_{1}$ is a new edge, or one of r_{1} and c_{1} is the new vertex created by the identification of the vertices of \mathcal{I}_{γ}. Since C is not a lift of C^{\prime}, in the former case C^{\prime} contains a new vertex that is replaced by a path in C, and in the latter case C^{\prime} contains a new edge. Therefore, $c_{2} r_{3}$ and $c_{3} r_{5}$ are edges of G.

7 Contributions of faces

Let G be a graph in a surface Σ with rings \mathcal{R} satisfying (I3). Let γ be a good configuration that strongly appears in G, let G^{\prime} be the γ-reduction of G, and let $G^{\prime \prime}$ be a subgraph of G^{\prime} that includes all the rings and satisfies (I0).

Let $f^{\prime \prime}$ be a face of $G^{\prime \prime}$, and let H be the subgraph of $G^{\prime \prime}$ that forms the boundary of $f^{\prime \prime}$. We wish to define a subgraph $J_{f^{\prime \prime}}$ of G that will correspond to H, and a union of faces of $J_{f^{\prime \prime}}$ that will correspond to $f^{\prime \prime}$.

Let us recall that during the construction of the graph G^{\prime}, parallel edges may have been removed (e.g., if γ is R 5 and v_{4} and x_{6} have a common neighbor), but we have retained the correspondence of each non-squashed edge e of G^{\prime} to a unique edge of G (which also determined the placement of e in the embedding of G^{\prime}). We now define the edge-set of $J_{f^{\prime \prime}}$, by replacing pieces of the boundary of $f^{\prime \prime}$ by appropriate replacement paths. More precisely, we apply the following construction to each boundary walk C of $f^{\prime \prime}$. Let C be $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{m}, e_{m}$ and let $e_{m+1}=e_{1}, v_{m+1}=v_{1}, e_{0}=e_{m}$ and $v_{0}=v_{m}$. Suppose that v_{i} is a vertex and $e \in\left\{e_{i-1}, e_{i}\right\}$ is an edge of C incident with v_{i}, and let $e^{\prime} \in\left\{e_{i-1}, e_{i}\right\} \backslash\{e\}$ be the other edge of C incident with v_{i}. Note that $e_{i-1} \neq e_{i}$, since otherwise v_{i} would have degree 1 in $G^{\prime \prime}$, contrary to the assumption that $G^{\prime \prime}$ includes all rings and satisfies (I0). We define orig $\left(v_{i}, e\right)$ as follows.

- If v_{i} is not a new vertex, then $\operatorname{orig}\left(v_{i}, e\right)=v_{i}$.
- If v_{i} is a new vertex and e is not a squashed edge, then the edge of G corresponding to e is incident with a unique vertex $z \in \mathcal{I}_{\gamma}$, and we define $\operatorname{orig}\left(v_{i}, e\right)=z$.
- If v_{i} is a new vertex and both e and e^{\prime} are squashed edges, then the inspection of configurations shows that this is only possible if γ is isomorphic to the configuration R3. In this case, orig $\left(v_{i}, e\right)$ is defined to be the vertex which is in the depiction of R3 in Figure 1 denoted by v_{5}.
- Finally, suppose that v_{i} is a new vertex, e is a squashed edge with the other end $u \neq v_{i}$, and e^{\prime} is not a squashed edge. If u is adjacent to $\operatorname{orig}\left(v_{i}, e^{\prime}\right)$, then $\operatorname{orig}\left(v_{i}, e\right)=\operatorname{orig}\left(v_{i}, e^{\prime}\right)$. Otherwise, note that γ is isomorphic to the configuration R 3 , and $\operatorname{orig}\left(v_{i}, e\right)$ is again defined to be the vertex which is in the depiction of R3 in Figure 1 denoted by v_{5}.

Define $\operatorname{orig}\left(e_{i}\right)$ as the edge of G joining $\operatorname{orig}\left(v_{i}, e_{i}\right)$ with $\operatorname{orig}\left(v_{i+1}, e_{i}\right)$; note that $\operatorname{orig}\left(e_{i}\right)=e_{i}$ unless e_{i} is a squashed edge.

Now, replace each edge e_{i} of C by a path P_{i} defined as follows. If e_{i} is a new edge, then P_{i} is the corresponding replacement path. Otherwise, let P_{i} consist of the edge $\operatorname{orig}\left(e_{i}\right)$, and in case that $\operatorname{orig}\left(v_{i+1}, e_{i}\right) \neq \operatorname{orig}\left(v_{i+1}, e_{i+1}\right)$ also of the replacement path between the vertices $\operatorname{orig}\left(v_{i+1}, e_{i}\right)$ and $\operatorname{orig}\left(v_{i+1}, e_{i+1}\right)$ (the two vertices belong to \mathcal{I}_{γ}). The newly constructed walk has the same homotopy
as C. The graph $J_{f^{\prime \prime}}$ is defined as the result of applying the above construction to every boundary walk of $f^{\prime \prime}$.

The construction is illustrated in Figure 3, where configuration R3 is reduced. For example, in the boundary walk $v_{6} z x_{3} \ldots v_{4} \ldots$ of the face f_{1} of $G^{\prime \prime}$, we have $\operatorname{orig}\left(z, v_{6} z\right)=v_{5}$ and $\operatorname{orig}\left(z, z x_{3}\right)=v_{3}$, and thus the edge $v_{6} z$ is replaced by $\operatorname{orig}\left(v_{6} z\right)=v_{6} v_{5}$ and the replacement path $v_{5} v_{4} v_{3}$.

As this example also illustrates, a face $f^{\prime \prime}$ of $G^{\prime \prime}$, it may correspond to several faces of $J_{f^{\prime \prime}}$, in case that an internal vertex of a replacement path belongs to the subgraph $G^{\prime \prime}$; let the set of these faces of $J_{f^{\prime \prime}}$ be denoted by $S_{f^{\prime \prime}}$.

The elasticity of $f^{\prime \prime}$ is $\operatorname{el}\left(f^{\prime \prime}\right)=\left(\sum_{f \in S_{f^{\prime \prime}}}|f|\right)-\left|f^{\prime \prime}\right|$. In the example, $\operatorname{el}\left(f_{1}\right)=\operatorname{el}\left(f_{2}\right)=2$ and $\operatorname{el}\left(f_{3}\right)=\operatorname{el}\left(f_{4}\right)=0$. Note that $f^{\prime \prime}$ can have non-zero elasticity only if $J_{f^{\prime \prime}}$ contains at least one replacement path and each replacement path contributes to elasticities of at most two faces. Furthermore, if the path contributes to the elasticity of a face $f^{\prime \prime}$ twice, then the corresponding new vertex or both vertices incident with the corresponding new edge appear at least twice in the boundary walks of $f^{\prime \prime}$. This cannot happen if $f^{\prime \prime}$ is semiclosed 2-cell and all vertex-like rings of $G^{\prime \prime}$ are also vertex-like in G, since a new vertex cannot be the main vertex of a vertex-like ring by the first condition in the definition of appearance and the analogous later condition for R4, and the new edge cannot join the main vertices of distinct vertex-like rings by the first condition in the definition of strong appearance. Using these observations and the inspection of the configurations, we obtain the following.

Lemma 7.1. Let G, γ, G^{\prime}, and $G^{\prime \prime}$ be as above. Then $G^{\prime \prime}$ has at most three faces with non-zero elasticity, and the sum of the elasticities of the faces of $G^{\prime \prime}$ is at most 10. If a face $f^{\prime \prime}$ of $G^{\prime \prime}$ is closed 2-cell or omnipresent, then el $\left(f^{\prime \prime}\right) \leq 5$, and if the inequality is strict, then el $\left(f^{\prime \prime}\right) \leq 3$. Furthermore, if all vertex-like rings of $G^{\prime \prime}$ are also vertex-like in G, then the previous statement holds also for semi-closed 2 -cell faces.

Let G be a graph in a surface Σ with rings \mathcal{R}, let J be a subgraph of G, and let S be a subset of the set of faces of $J \cup \bigcup \mathcal{R}$ such that J is equal to the union of the boundaries of the faces in S. We define $G[S]$ to be the subgraph of G consisting of J and all the vertices and edges drawn inside the faces of S. Let $C_{1}, C_{2}, \ldots, C_{k}$ be the boundary walks of the faces in S. We would like to view $G[S]$ as a graph with rings C_{1}, \ldots, C_{k}. However, the walks C_{1}, \ldots, C_{k} do not necessarily have to be disjoint, and they do not have to be cycles. To overcome this difficulty, we proceed as follows: Suppose that $S=\left\{f_{1}, \ldots, f_{m}\right\}$. For $1 \leq i \leq m$, let Σ_{i} be a surface with boundary B_{i} such that $\Sigma_{i} \backslash B_{i}$ is homeomorphic to f_{i}. Let $\theta_{i}: \Sigma_{i} \backslash B_{i} \rightarrow f_{i}$ be a homeomorphism that extends to a continuous mapping $\theta_{i}: \Sigma_{i} \rightarrow \overline{f_{i}}$, where $\overline{f_{i}}$ denotes the closure of f_{i}. Let G_{i} be the inverse image of $G \cap \overline{f_{i}}$ under θ_{i}. Then G_{i} is a graph normally embedded in Σ_{i}. We say that the set of embedded graphs $\left\{G_{i}: 1 \leq i \leq m\right\}$ is a G-expansion of S. Note that there is a one-to-one correspondence between the boundary walks of the faces of S and the rings of the graphs in the G-expansion of S; however, each vertex of J may be split to several copies.

Figure 3: The G-expansion.

We define the G-expansion of $f^{\prime \prime}$ to be the G-expansion of $S_{f^{\prime \prime}}$. The following lemma is straightforward.

Lemma 7.2. Let G, γ, G^{\prime}, and $G^{\prime \prime}$ be as above, and let f be a face of G. Then either there exists a unique face $f^{\prime \prime}$ of $G^{\prime \prime}$ such that f corresponds to a face of a member of the G-expansion of $f^{\prime \prime}$ or γ is isomorphic to R3 and f is the 6-face of \mathcal{F}_{γ}.

Let us now give an informal summary of what we are trying to achieve in this section. We assign weights to the faces of embedded graphs according to the function s as described in Section 5, and we aim to show that the sum of the weights of the faces of G is bounded by the sum of the weights of the faces of $G^{\prime \prime}$. To do so, we would like to claim that the sum w of the weights of the faces of members of the G-expansion of $f^{\prime \prime}$ is bounded by the weight $w^{\prime \prime}$ of $f^{\prime \prime}$. In Theorem 8.5, we will show that this claim holds, provided that the elasticity of $f^{\prime \prime}$ is small and the G-expansion of $f^{\prime \prime}$ is not a singleton set consisting of one of a few exceptional graphs. Here, we assign a contribution $c\left(f^{\prime \prime}\right)$ to each face $f^{\prime \prime}$ of $G^{\prime \prime}$ according to the criteria that we later prove to ensure that $w \leq w^{\prime \prime}-c\left(f^{\prime \prime}\right)$. Furthermore, we argue that the sum of the contributions of all faces is non-negative.

Let us now proceed more formally. Let G be a graph in a surface Σ with rings \mathcal{R}. If Σ is a disk and $\mathcal{R}=\{R\}$, then we say that G is a plane graph with one ring R. We say that a plane graph G with one ring R of length $l \geq 5$ is exceptional if it satisfies one of the conditions below (see Figure 4):
(E0) $G=R$,
(E1) $l \geq 8$ and $|E(G)|-|E(R)|=1$,
(E2) $l \geq 9, V(G)-V(R)$ has exactly one vertex of degree three, and the faces of G have lengths $5,5, l-4$,
(E3) $l \geq 11, V(G)-V(R)$ has exactly one vertex of degree three, and the faces of G have lengths $5,6, l-5$,
(E4) $l \geq 10, V(G)-V(R)$ consists of two adjacent degree three vertices, and the faces of G have lengths $5,5,5, l-5$,
(E5) $l \geq 10, V(G)-V(R)$ consists of five degree three vertices forming a facial cycle of length five, and the faces of G have lengths $5,5,5,5,5, l-5$.

We say that G is very exceptional if it satisfies (E0), (E1), (E2) or (E3).
Let us now show the following lemma, which we use to analyze omnipresent faces.

Lemma 7.3. Let G be a graph in a surface Σ with rings \mathcal{R}, let G be wellbehaved, let it satisfy (IO), (I4) and (I8), let γ be a good configuration that strongly appears in G, let G^{\prime} be the γ-reduction of G, let $G^{\prime \prime}$ be a subgraph of G^{\prime} that includes all the rings and satisfies (IO), and let H be a component of

Figure 4: Exceptional graphs.
$G^{\prime \prime}$ that contains a new edge or a new vertex. Assume that either Σ is a disk and $|\mathcal{R}|=1$ and every face of $G^{\prime \prime}$ is closed 2 -cell, in which case we let R be the unique member of \mathcal{R}, or that $G^{\prime \prime}$ has an omnipresent face, in which case we let R be the boundary walk of the omnipresent face that is a subgraph of H. In either case H can be regarded as a plane graph with one ring R. Then H is not very exceptional. Furthermore, if γ is isomorphic to one of R6, R6.1, R7, R7.1, R7.2, R7.3 or R7.4, then H is not exceptional.

Proof. Since H contains a new vertex or a new edge (which are not contained in the boundary), it does not satisfy (E0). If γ is isomorphic to one of R7, R7.1, R7.2, R7.3 or R7.4, then all vertices in $\mathcal{A}_{\gamma} \cup \mathcal{I}_{\gamma}$ and all their neighbors are internal by the definition of appearance, and thus each new edge or new vertex is at distance at least two from R. It follows that H cannot be exceptional. Similarly, we exclude the case that γ is isomorphic to R6 or R6.1. Thus, assume that γ is one of R1, ..., R5.

Suppose that H contains a new edge $x y$. Note that since γ does not touch a non-ring cycle of length at most four by the definition of weak appearance, neither x nor y is a new vertex. Since γ appears strongly in G, we may assume that x is an internal vertex; thus H does not satisfy (E1). Suppose that H satisfies (E2) or (E3). Then, in H the vertex x has three neighbors in R. On the other hand, x has at most one neighbor in R in G, by (I4). We conclude that x is adjacent to a new vertex in $G^{\prime \prime}$ that belongs to R. It follows that γ is R 4 or R 5 , and in the former case at least one of x_{4} and x_{5} is internal. Let $\mathcal{I}=\mathcal{I}_{\gamma}$ if γ is R 5 and $\mathcal{I}=\left\{x_{4}, x_{5}\right\}$ if γ is R4. Note that there exists a vertex in \mathcal{I} belonging to R, and another vertex of \mathcal{I} is adjacent to x in G. If γ is isomorphic to R4, then by symmetry we may assume that x_{1} is adjacent to x_{4} and x_{3} and x_{5} belong to R. However, by (I8), the cycle $x_{1} v_{1} v_{5} v_{4} x_{4}$ consisting of internal vertices separates x_{3} from x_{5}, which is a contradiction. If γ is isomorphic to R5, then by the conditions of appearance, v_{4} is an internal vertex; hence x_{6} belongs to R. Since v_{2} and v_{4} are not adjacent, we conclude that v_{4} is adjacent to x_{8} and that v_{2} belongs to R. However, this again contradicts (I8).

Therefore, we may assume that H contains a new vertex, but not a new edge. Suppose first that γ is not isomorphic to R4. If H satisfied (E1), then by (I4) there would exist vertices $x \in \mathcal{I}_{\gamma} \cap V(R)$ and $y \in \mathcal{I}_{\gamma} \backslash V(R)$ and a neighbor z of y in R, where z is not adjacent to x. However, this contradicts the assumption that γ appears strongly in G. If H satisfies (E2) or (E3), then by (I4) we have $\left|\mathcal{I}_{\gamma}\right|=3$ (thus γ is R3), all elements of \mathcal{I}_{γ} are internal and each of them has exactly one neighbor in R. This is excluded, since γ appears in G.

Finally consider the case that γ is R 4 and H does not contain a new edge. By (I4), H does not satisfy (E2) or (E3); thus suppose that H satisfies (E1). If x_{4} is an internal vertex, this implies that $x_{5} \in V(R)$ and x_{4} has a neighbor w in R distinct from z. By (I4), z is an internal vertex. Since G is well-behaved, the path $x_{5} z x_{4} w$ forms a part of a boundary of a 5 -face; thus z has degree two, contrary to (I0). The case that x_{5} is internal is symmetric; thus assume that both x_{4} and x_{5} belong to R. Then v_{2} is an internal vertex of degree at least four by the definition of weak appearance and has a neighbor $w \in V(R)$. However,
since G is well-behaved, the subpaths $v_{3} v_{2} w$ and $v_{1} v_{2} w$ of the paths $x_{4} v_{4} v_{3} v_{2} w$ and $x_{5} v_{5} v_{1} v_{2} w$ form parts of boundaries of faces, implying on the contrary that v_{2} has degree three.

Let $s:\{5,6, \ldots\} \rightarrow \mathbb{R}^{+}$be an increasing function, to be specified later, such that
(S4) $14 s(5) \leq s(6), 135 s(5) \leq s(7), 4 s(6) \leq s(7), 3 s(7) \leq s(8), 2 s(8) \leq$ $s(7)+s(9)$ and $s(l)=l-8$ for $l \geq 9$.

It follows that the function s satisfies

$$
\begin{equation*}
s(x+a)-s(x) \leq s(y+a)-s(y) \text { for all integers } y \geq x \geq 5 \text { and } a \geq 0 \tag{S5}
\end{equation*}
$$

We will refer to condition (S5) as convexity.
Let G be a graph in a surface Σ with rings \mathcal{R}, let γ be a good configuration that strongly appears in G, let G^{\prime} be the γ-reduction of G, and let $G^{\prime \prime}$ be a subgraph of G^{\prime} that includes all the rings and satisfies (IO). For every face $f^{\prime \prime}$ of $G^{\prime \prime}$ we define its contribution $c\left(f^{\prime \prime}\right)$ as follows.

Let $f^{\prime \prime}$ be a semi-closed 2-cell face of $G^{\prime \prime}$, and let $G_{f^{\prime \prime}}$ be a member of the G-expansion of $f^{\prime \prime}$. Then the contribution of $f^{\prime \prime}$ is defined according to the following rules:

- If $\left|S_{f^{\prime \prime}}\right|=1$ and $G_{f^{\prime \prime}}$ satisfies (E0), then $c\left(f^{\prime \prime}\right)=-\infty$ if $f^{\prime \prime}$ has non-zero elasticity and $c\left(f^{\prime \prime}\right)=0$ otherwise.
- If $\left|S_{f^{\prime \prime}}\right|=1$ and $G_{f^{\prime \prime}}$ satisfies (E1), then $c\left(f^{\prime \prime}\right)=-\infty$ if $\mathrm{el}\left(f^{\prime \prime}\right)=5$ and $c\left(f^{\prime \prime}\right)=s\left(8-\operatorname{el}\left(f^{\prime \prime}\right)\right)-2 s(5)$ otherwise.
- If $\left|S_{f^{\prime \prime}}\right|=1$ and $G_{f^{\prime \prime}}$ satisfies (E2), then $c\left(f^{\prime \prime}\right)=-\infty$ if $\mathrm{el}\left(f^{\prime \prime}\right)=5$ and $c\left(f^{\prime \prime}\right)=s\left(9-\operatorname{el}\left(f^{\prime \prime}\right)\right)-3 s(5)$ otherwise.
- If $\left|S_{f^{\prime \prime}}\right|=1$ and $G_{f^{\prime \prime}}$ satisfies (E3), then $c\left(f^{\prime \prime}\right)=s\left(11-\operatorname{el}\left(f^{\prime \prime}\right)\right)-2 s(6)-$ $s(5)$.
- If $\left|S_{f^{\prime \prime}}\right|=1$ and $G_{f^{\prime \prime}}$ satisfies (E4) or (E5), or if $\left|S_{f^{\prime \prime}}\right|=2$ and $G_{f^{\prime \prime}}$ consists of two cycles such that one of them has length 5 , then $c\left(f^{\prime \prime}\right)=$ $s\left(10-\operatorname{el}\left(f^{\prime \prime}\right)\right)-6 s(5)$.
- If $\left|S_{f^{\prime \prime}}\right|=1$ and $G_{f^{\prime \prime}}$ is not exceptional, and
- $G_{f^{\prime \prime}}$ contains a path $P=v_{1} v_{2} v_{3} v_{4}$ such that $v_{1}, v_{4} \in V\left(J_{f^{\prime \prime}}\right), v_{2}, v_{3} \notin$ $V\left(J_{f^{\prime \prime}}\right)$ and both of the open disks bounded by P and paths in $J_{f^{\prime \prime}}$ contain at least two vertices of G, then $c\left(f^{\prime \prime}\right)=s(7)$.
- Otherwise, $c\left(f^{\prime \prime}\right)=s\left(11-\operatorname{el}\left(f^{\prime \prime}\right)\right)-s(6)+5 s(5)$.
- If $\left|S_{f^{\prime \prime}}\right|=2$ and $G_{f^{\prime \prime}}$ does not consist of two cycles such that one of them has length 5 , or if $\left|S_{f^{\prime \prime}}\right| \geq 3$, then $c\left(f^{\prime \prime}\right)=s\left(12-\operatorname{el}\left(f^{\prime \prime}\right)\right)-2 s(6)$.

Suppose now that $f^{\prime \prime}$ is an omnipresent face of $G^{\prime \prime}$. Let $G_{1}^{\prime \prime}, G_{2}^{\prime \prime}, \ldots, G_{k}^{\prime \prime}$ be the components of $G^{\prime \prime}$ such that $G_{i}^{\prime \prime}$ contains the ring $R_{i} \in \mathcal{R}$. If there exist $i \neq j$ such that $G_{i}^{\prime \prime} \neq R_{i}$ and $G_{j}^{\prime \prime} \neq R_{j}$, then $c\left(f^{\prime \prime}\right)=1$. Otherwise, we may assume that $G_{i}^{\prime \prime}=R_{i}$ for $i \geq 2$. If $G_{1}^{\prime \prime}$ satisfies (E0), (E1), (E2) or (E3), then $c\left(f^{\prime \prime}\right)=-\infty$. If $G_{1}^{\prime \prime}$ satisfies (E4) or (E5), then $c\left(f^{\prime \prime}\right)=5-\operatorname{el}\left(f^{\prime \prime}\right)-5 s(5)$, otherwise $c\left(f^{\prime \prime}\right)=5-\operatorname{el}\left(f^{\prime \prime}\right)+5 s(5)$.

This completes the definition of contribution of faces of $G^{\prime \prime}$. We define the contribution of $G^{\prime \prime}$ as $c\left(G^{\prime \prime}\right)=-\delta+\sum_{f^{\prime \prime} \in F\left(G^{\prime \prime}\right)} c\left(f^{\prime \prime}\right)$, where δ is $s(6)$ if γ is isomorphic to R3 and 0 otherwise.
Lemma 7.4. Let G be a well-behaved graph in a surface Σ with rings \mathcal{R} satisfying (IO)-(I4) and (I8), let γ be a good configuration strongly appearing in G, and let G^{\prime} be the γ-reduction of G. Suppose that $G^{\prime \prime}$ is a subgraph of G^{\prime} that includes \mathcal{R}, every vertex-like ring of $G^{\prime \prime}$ is also vertex-like in $G^{\prime}, G^{\prime \prime}$ satisfies (I0) and (I6), and $G^{\prime \prime}$ contains a new vertex or a new edge.

1. If each face of $G^{\prime \prime}$ is semi-closed 2 -cell or omnipresent, then $c\left(G^{\prime \prime}\right) \geq 0$.
2. If each face of $G^{\prime \prime}$ is semi-closed 2-cell, then $G^{\prime \prime}$ has a face of length at least six.
3. If each face of $G^{\prime \prime}$ is semi-closed 2-cell, Σ is a disk, and $|\mathcal{R}|=1$, then $c\left(G^{\prime \prime}\right) \geq 10 s(5)$.

Proof. We first prove the first and third statements of the lemma. The proof will show that there is a face of positive contribution, and we will utilize that face in the proof of the second statement of the lemma. Let us note that $G^{\prime \prime}$ satisfies the assumptions of Lemma 7.3, and thus the contribution of the omnipresent face (if $G^{\prime \prime}$ has such a face) is not $-\infty$.

We may assume that there exists a face of non-zero elasticity, for otherwise all faces have non-negative contribution, and all vertices of $\operatorname{dom}\left(d_{\gamma}\right)$ are included in the interior of a single face $f^{\prime \prime}$ of $G^{\prime \prime}$; clearly, $G_{f^{\prime \prime}}$ is not exceptional, and thus this face satisfies $c\left(f^{\prime \prime}\right) \geq s(7)$.

Let us argue that if a face $f^{\prime \prime}$ that is semi-closed 2-cell has non-zero elasticity, then either $S_{f^{\prime \prime}}$ has at least two faces or the interior of the unique face of $S_{f^{\prime \prime}}$ contains an edge of G. Indeed, most replacement paths are incident with edges on both of its sides; thus if such a replacement path is used in $J_{f^{\prime \prime}}$, then at least one such edge lies in $S_{f^{\prime \prime}}$. The exceptions are the replacement paths in R3, R4 and the replacement path between the vertices of \mathcal{I}_{γ} in R7. In these configurations, the middle vertex v of the replacement path could also lie on the boundary walk of $f^{\prime \prime}$, in which case all the edges incident with v could belong to $J_{f^{\prime \prime}}$ or lie outside of $S_{f^{\prime \prime}}$. However, then $S_{f^{\prime \prime}}$ has at least two faces. We conclude that if $c\left(f^{\prime \prime}\right)=-\infty$, then $\operatorname{el}\left(f^{\prime \prime}\right)=5$ and two replacement paths are used in the construction of $J_{f^{\prime \prime}}$.

Let us first consider the case when every face of $G^{\prime \prime}$ has elasticity at most three. Then the contribution of each face is greater or equal to $-s(5)$. Furthermore, there are at most two faces of elasticity three, at most one of them has contribution $-s(5)$, and every other face has non-negative contribution. If $G^{\prime \prime}$
has an omnipresent face, then $c\left(G^{\prime \prime}\right) \geq 2-6 s(5)-s(6)$ or $c\left(G^{\prime \prime}\right) \geq 1-s(6)$, and hence we may assume that all faces of $G^{\prime \prime}$ are semi-closed 2-cell. Observe that G has a face $f^{\prime \prime}$ such that at least one vertex of $\operatorname{dom}\left(d_{\gamma}\right)$ is contained inside a face of $S_{f^{\prime \prime}}$. For this face, we have $c\left(f^{\prime \prime}\right) \geq s(6)-3 s(5)$. Furthermore, if γ is R3, then the elasticity of $f^{\prime \prime}$ is at most two; thus $c\left(f^{\prime \prime}\right) \geq s(7)-3 s(5)$, and all other faces of $G^{\prime \prime}$ have non-negative contribution. Therefore, $c\left(G^{\prime \prime}\right) \geq$ $\min (s(6)-4 s(5), s(7)-s(6)-3 s(5)) \geq 10 s(5)$, because $14 s(5) \leq s(6)$. This completes the case when every face of $G^{\prime \prime}$ has elasticity at most three.

Thus we may assume that $G^{\prime \prime}$ has a face f_{2} of elasticity five. It follows that γ is R4, R5, or R7, and $G^{\prime \prime}$ contains a new edge incident with two faces of non-zero elasticity, say f_{1} and f_{2}, where f_{2} contains all vertices of $\operatorname{dom}\left(d_{\gamma}\right)$. Furthermore, $G^{\prime \prime}$ contains a new vertex w incident with f_{2} and possibly another face f_{3} of non-zero elasticity.

Then the elasticity of f_{2} is 5 , and by inspection of the configurations, we conclude that $c\left(f_{2}\right) \geq-5 s(5)$. Furthermore, if γ is isomorphic to R7, then $c\left(f_{2}\right)=s(7)$ if f_{2} is semi-closed 2-cell, and by Lemma 7.3, we have $c\left(f_{2}\right) \geq 5 s(5)$ if f_{2} is omnipresent.

Assume now that either f_{2} is the only face of $G^{\prime \prime}$ with non-zero elasticity that is incident with w, or that $f_{1} \neq f_{3}$. Consider a face $f \in\left\{f_{1}, f_{3}\right\}$ with non-zero elasticity. Since el $(f) \leq 3$, we have $c(f) \geq-s(5)$. Furthermore, if f is omnipresent, then by Lemma 7.3, we have $c(f) \geq 2-5 s(5)$ or $c(f) \geq 1$, and hence $c\left(G^{\prime \prime}\right)>10 s(5)$; thus we may assume that each such face f is semi-closed 2-cell. If γ is R5, then $\operatorname{el}\left(f_{1}\right)=2$ and $c\left(f_{1}\right) \geq s(6)-2 s(5)$. Similarly if γ is R4, then by the definition of appearance v_{2} has degree at least 4 in $G_{f_{1}}$; hence $c\left(f_{1}\right) \geq s(7)-6 s(5)$. In both cases we get $c\left(G^{\prime \prime}\right) \geq 10 s(5)$. Thus we may assume that γ is R7. If Σ is a disk and $|\mathcal{R}|=1$, then f_{2} is not omnipresent, and hence $c\left(G^{\prime \prime}\right) \geq s(7)-2 s(5) \geq 10 s(5)$, because (using the numbering of the vertices as in R7) the path $v_{3} v_{12} v_{6} x_{6}$ shows that the contribution of f_{2} is $s(7)$. Otherwise, $c\left(G^{\prime \prime}\right) \geq 3 s(5)$, because $c\left(f_{2}\right) \geq 5-\operatorname{el}\left(f_{2}\right)+5 s(5)=5 s(5)$, using Lemma 7.3.

Therefore, we may assume that $f_{1}=f_{3}$ and f_{1} has elasticity 5 . If Σ were a disk and $|\mathcal{R}|=1$, or if f_{1} or f_{2} were omnipresent, then w together with a vertex of the new edge would form a 2 -cut in $G^{\prime \prime}$, contradicting (I6). We conclude that both f_{1} and f_{2} are semi-closed 2-cell and that either Σ is not a disk or $|\mathcal{R}| \neq 1$; hence, it suffices to show that $c\left(G^{\prime \prime}\right)$ is non-negative.

Suppose that γ is R4. Since γ weakly appears in G, we have that no cycle of length at most 4 touches γ, and thus $z \neq v_{2}$. The fact that v_{2} has degree at least four in $G_{f_{1}}$ implies that $c\left(f_{1}\right) \geq 5 s(5)$, unless $G_{f_{1}}$ consists of a 5 -cycle and a $\left|f_{1}\right|$-cycle. However, in that case z would be a vertex of degree two, contradicting (I0). It follows that, $c\left(G^{\prime \prime}\right) \geq 0$.

Assume next that γ is R5. By (I1) and (I2) we have that $G_{f_{1}}$ is not an exceptional graph (considering the cycle formed by the path $v_{1} v_{8} v_{7} v_{6} v_{5}$ together with a path in $\left.G_{f_{1}}\right)$, thus again $c\left(f_{1}\right) \geq 5 s(5)$ and $c\left(G^{\prime \prime}\right) \geq 0$.

Finally, let γ be R7. If $\left|S_{f_{1}}\right| \geq 2$, then $c\left(f_{1}\right) \geq-5 s(5)$. Otherwise, note that z is by (I0) incident with an edge lying inside the face of $S_{f_{1}}$. Since γ appears strongly in G, we have that v_{2} is not adjacent to z, and v_{2} and z have no common neighbor distinct from v_{1}, v_{3}, x_{6} and x_{7}. It follows that
$G_{f_{1}}$ does not satisfy (E1), (E2) or (E3), and thus $c\left(f_{1}\right) \geq-5 s(5)$. Therefore, $c\left(G^{\prime \prime}\right) \geq s(7)-5 s(5)>0$.

Therefore, both inequalities from the statement of the lemma hold. Furthermore, note that in all the cases, at least one face $f^{\prime \prime}$ of $G^{\prime \prime}$ has positive contribution; and if $f^{\prime \prime}$ is semi-closed 2-cell, then $\left|f^{\prime \prime}\right| \geq 6$.

8 Plane graphs with one ring

Before we turn our attention to plane graphs with one ring, let us show several properties of critical graphs. Let us recall that \mathcal{R}-critical graphs were defined at the end of Section 2.

Lemma 8.1. Let G be a graph in a surface Σ with rings \mathcal{R}. If G is \mathcal{R}-critical, then it satisfies (I0), (I1) and (I2).

Proof. If G contains an internal vertex v of degree at most two, then let $G^{\prime}=$ $G-v$. If G contains a cycle C consisting of internal vertices of degree three that has even length or two vertices of C have adjacent neighbors, then let $G^{\prime}=G-V(C)$. For any precoloring ψ of \mathcal{R} that extends to a 3 -coloring ϕ of G^{\prime}, observe that ϕ can be extended to a 3-coloring of G. This contradicts the assumption that G is \mathcal{R}-critical.

By the theorem of Grötzsch, no component of a critical graph is a trianglefree planar graph. This observation can be strengthened as follows.

Lemma 8.2. Let G be a graph in a surface Σ with rings \mathcal{R}. Suppose that each component of G is a planar graph containing exactly one of the rings. If G is \mathcal{R}-critical and contains no non-ring triangle, then each component of G is 2-connected and G satisfies (I6).

Proof. We can consider each component of G separately; thus assume that Σ is the sphere and G has only one ring R. Firstly, observe that G is 2 -connected; otherwise, it contains proper subgraphs G_{1} and G_{2} such that $G=G_{1} \cup G_{2}$ and $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \leq 1$. Since R is 2 -connected, we can assume that $R \subseteq G_{1}$. However, G_{2} is 3 -colorable by Theorem 1.1, and since we can permute the colors arbitrarily, any precoloring of the common vertex of G_{1} and G_{2} extends to a 3-coloring of G_{2}. It follows that any 3-coloring of G_{1} extends to a 3-coloring of G, contrary to the criticality of G.

Suppose now that G has an internal 2-cut, i.e., there exist proper induced subgraphs G_{1} and G_{2} of G such that $G=G_{1} \cup G_{2}, V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{u, v\}$ for some vertices $u, v \in V(G)$, and $R \subseteq G_{1}$. Since G is 2-connected and planar, both u and v are incident with the same face of an embedding of G_{2} in the plane. If u and v were adjacent, then we would argue as in the previous paragraph that every precoloring of u and v by distinct colors extends to a 3 -coloring of G_{2}, contrary to the criticality of G. If u and v are not adjacent, then let G_{2}^{\prime} be the graph obtained from G_{2} by adding vertices z_{1} and z_{2} and edges of paths $u z_{1} v$ and $u z_{2} v$. The resulting graph is triangle-free, and by [8], every precoloring of
the cycle $u z_{1} v z_{2}$ using three colors extends to a 3 -coloring of G_{2}^{\prime}; hence, every precoloring of u and v extends to a 3 -coloring of G_{2}. Again, this contradicts the criticality of G.

If G is a plane graph with one ring R, then we abbreviate $\{R\}$-critical to R-critical. Such graphs are very important for the study of critical graphs on surfaces, for the following reason:

Lemma 8.3. Let G be a graph in a surface Σ with rings \mathcal{R}, and assume that G is \mathcal{R}-critical. Let C be a non-facial cycle in G bounding an open disk $\Delta \subseteq \Sigma$, and let G^{\prime} be the graph consisting of the vertices and edges of G drawn in the closure of Δ. Then G^{\prime} may be regarded as a plane graph with one ring C, and as such it is C-critical.

Proof. If G^{\prime} is not C-critical, then let $e \in E\left(G^{\prime}\right) \backslash E(C)$ be an edge such that every precoloring of C that extends to $G^{\prime}-e$ also extends to G^{\prime}. Observe that every precoloring of \mathcal{R} that extends to $G-e$ also extends to G, contrary to the assumption that G is \mathcal{R}-critical.

Critical plane graphs with one ring of length at most twelve were described by Thomassen [15] and independently by Walls [17] (actually, both papers describe ϕ-critical graphs for some fixed precoloring ϕ of R, but Theorem 8.4 follows straightforwardly from the characterizations):

Theorem 8.4. Let G be a plane graph of girth 5 with one ring R such that $|V(R)| \leq 12$. If G is R-critical and R is an induced cycle, then
(a) $|V(R)| \geq 9$ and $G-V(R)$ is a tree with at most $|V(R)|-8$ vertices, or
(b) $|V(R)| \geq 10$ and $G-V(R)$ is a connected graph with at most $|V(R)|-5$ vertices that contains exactly one cycle, and the length of this cycle is 5 , or
(c) $|V(R)|=12$ and every second vertex of R has degree two and is contained in a facial 5-cycle.

In this section, we generalize this result by giving bounds on the weight of planar critical graphs with one ring.

Theorem 8.5. Let $\epsilon \leq 1 / 1278$ be a positive real number and let $s:\{5,6, \ldots\} \rightarrow$ \mathbb{R} be an increasing function satisfying conditions (S1)-(S5) formulated in Sections 5 and 7. Let G be a plane graph with one ring R of length $l \geq 5$ such that G is R-critical and has no cycle of length at most four, and let w be the weight function arising from s as described in Section 5. Then

- $l \geq 8$ and $w(G,\{R\}) \leq s(l-3)+s(5)$, and furthermore,
- if R does not satisfy (E1), then $l \geq 9$ and $w(G,\{R\}) \leq s(l-4)+2 s(5)$,
- if (G, R) is not very exceptional, then $l \geq 10$ and $w(G,\{R\}) \leq s(l-5)+$ $5 s(5)$, and
- if (G, R) is not exceptional, then $l \geq 11$ and $w(G,\{R\}) \leq s(l-5)-5 s(5)$.

Proof. Let us note that $s(l-4)+2 s(5) \leq s(l-3)+s(5)$ for $l \geq 9$ by (S4), and hence whenever G satisfies the second conclusion, it satisfies the first. If G satisfies (E1), then $l \geq 8$ and G has a face of length a such that $a \leq 7$. We can assume that the other face of G is at least as long as a, that is, $l+2-a \geq a$. Then, $w(G,\{R\})=s(a)+s(l+2-a) \leq s(l-3)+s(5)$, where the inequality holds by convexity. If G satisfies (E2), then it is very exceptional, $l \geq 9$ and $w(G,\{R\})=s(l-4)+2 s(5)$. If G satisfies (E3), then it is very exceptional, $l \geq 11$ and $w(G,\{R\})=s(l-5)+s(5)+s(6) \leq s(l-4)+2 s(5)$, where the inequality follows from convexity. If G satisfies (E4) or (E5), then $l \geq 10$ and $w(G,\{R\}) \leq s(l-5)+5 s(5) \leq s(l-4)+2 s(5)$, where the second inequality follows from convexity and (S4). Finally, suppose that G is not exceptional. By Theorem 8.4, we have $l \geq 11$; thus $s(l-5)-5 s(5) \leq s(l-5)+5 s(5) \leq$ $s(l-4)+2 s(5)$ by convexity and (S4). Therefore, it suffices to prove that $w(G,\{R\}) \leq s(l-5)-5 s(5)$ whenever G is not exceptional.

Suppose for a contradiction that (G, R) is not exceptional, and yet $w(G,\{R\})>$ $s(l-5)-5 s(5)$. We may assume that the theorem holds for all graphs with fewer edges than G.

$$
\begin{equation*}
l \geq 12 \tag{1}
\end{equation*}
$$

To prove (1) let $l \leq 11$. Since G is not exceptional, it follows from Theorem 8.4 that $l=11$, every face of G has length five, and there are at most seven faces. Thus $w(G,\{R\}) \leq 7 w(5) \leq s(6)-5 w(5)=s(l-5)-5 w(5)$ by (S4), a contradiction. This proves (1).
(2) There is no path of length at most two with both ends in R that is otherwise disjoint from R (i.e., G satisfies (I4)).

To prove (2) let P be a path in G of length one or two with ends $u, v \in V(R)$, and otherwise disjoint from R. Let C_{1}, C_{2} be the two cycles of $R \cup P$ other than R, and for $i=1,2$ let G_{i} be the subgraph of G drawn in the closed disk bounded by C_{i} and $l_{i}=\left|C_{i}\right|$. Note that $l_{1}+l_{2}=l+2|E(P)|$.

Since G does not satisfy (E1) and satisfies (I0), we can assume that $G_{1} \neq C_{1}$. Hence G_{1} is C_{1}-critical by Lemma 8.3. Assume for a moment that $G_{2}=C_{2}$. If G_{1} is not very exceptional, then using the minimality of G, we have $w(G,\{R\})=$ $w\left(G_{1},\left\{C_{1}\right\}\right)+s\left(l_{2}\right) \leq s\left(l_{1}-5\right)+5 s(5)+s\left(l_{2}\right) \leq s\left(l_{1}+l_{2}-10\right)+6 s(5) \leq$ $s(l-5)-5 s(5)$ by the convexity and (S4), a contradiction. Similarly, we exclude the case that P has length one and G_{1} is very exceptional. Finally, if G_{1} is very exceptional and $|E(P)|=2$, then $G-V(R)$ consists of one or two adjacent vertices of degree three in G. Let $a_{1} \leq a_{2} \leq \ldots$ be the lengths of the faces of G. If $G-V(R)$ has one vertex, then since G does not satisfy (E2) or (E3), we have either $a_{1} \geq 6$ (and $l \geq 12$), in which case $w(G,\{R\})=s\left(a_{1}\right)+s\left(a_{2}\right)+s\left(a_{3}\right) \leq$
$2 s(6)+s(l-6) \leq s(l-5)-5 s(5)$, by convexity and (S4), or $a_{1}=5$ and $a_{2} \geq 7$ (and $l \geq 13)$, in which case $w(G,\{R\})=s\left(a_{1}\right)+s\left(a_{2}\right)+s\left(a_{3}\right) \leq s(5)+s(7)+s(l-6) \leq$ $s(l-5)-5 s(5)$, again by convexity and (S4). If $G-V(R)$ consists of two adjacent vertices of degree three, then, since G does not satisfy (E4), we have $a_{3} \geq 6$ and $l \geq 12$; thus $w(G,\{R\})=s\left(a_{1}\right)+s\left(a_{2}\right)+s\left(a_{3}\right)+s\left(a_{4}\right) \leq 2 s(5)+s(6)+s(l-6) \leq$ $s(l-5)-5 s(5)$. This is a contradiction.

Thus we may assume that $G_{1} \neq C_{1}$ and $G_{2} \neq C_{2}$. Therefore, G_{1} is C_{1-} critical and G_{2} is C_{2}-critical by Lemma 8.3. Furthermore, we may assume that P cannot be chosen so that $G_{2}=C_{2}$. That implies that G_{1} and G_{2} are not very exceptional, and hence $w(G,\{R\}) \leq s\left(l_{1}-5\right)+5 s(5)+s\left(l_{2}-5\right)+5 s(5) \leq$ $s(l-5)-5 s(5)$. a contradiction. This proves (2).

Let ϕ be a precoloring of R that does not extend to a 3 -coloring of G.

$$
\begin{equation*}
G \text { is } \phi \text {-critical. } \tag{3}
\end{equation*}
$$

To prove (3) suppose to the contrary that G is not ϕ-critical. Then G contains a proper ϕ-critical subgraph G^{\prime}. By Lemma $8.2, G^{\prime}$ is 2 -connected, and thus all its faces are bounded by cycles. Note that G^{\prime} is not very exceptional by (2). Since G^{\prime} has fewer edges than G, we have $w\left(G^{\prime},\{R\}\right) \leq s(l-5)+5 s(5)$ by induction. For $f \in \mathcal{F}\left(G^{\prime}\right)$ let G_{f} be the subgraph of G drawn inside the closure of f, and let C be the cycle bounding f. By Lemma 8.3, G_{f} is either equal to C, or it is C-critical. Thus by induction, the convexity of s and (S4), we have $w\left(G_{f},\{C\}\right) \leq s(|f|)$. Furthermore, if G_{f} is not equal to C, then $w\left(G_{f},\{C\}\right) \leq s(|f|-3)+s(5)$. Let f_{0} be a face of G^{\prime} such that $G_{f_{0}}$ is not equal to f_{0}. Note that $\left|f_{0}\right| \geq 8$ by Theorem 8.4. We have

$$
\begin{aligned}
w(G,\{R\}) & =\sum_{f \in \mathcal{F}(G)} s(|f|)=\sum_{f^{\prime} \in \mathcal{F}\left(G^{\prime}\right)} w\left(G_{f^{\prime}},\left\{f^{\prime}\right\}\right) \\
& \leq s\left(\left|f_{0}\right|-3\right)+s(5)-s\left(\left|f_{0}\right|\right)+\sum_{f^{\prime} \in \mathcal{F}\left(G^{\prime}\right)} s\left(\left|f^{\prime}\right|\right) \\
& =s\left(\left|f_{0}\right|-3\right)+s(5)-s\left(\left|f_{0}\right|\right)+w\left(G^{\prime},\{R\}\right) \\
& \leq s\left(\left|f_{0}\right|-3\right)-s\left(\left|f_{0}\right|\right)+s(l-5)+6 s(5) \leq s(l-5)-5 s(5),
\end{aligned}
$$

where the last inequality holds by convexity and (S4). This proves (3).
(4) The graph G does not have two adjacent vertices of degree two (i.e., G satisfies (I5)). Furthermore, every vertex of degree two is incident with a face of length at most six.

To prove (4) let u and v be two adjacent vertices of degree two in R. Let G^{\prime} and R^{\prime} be the graphs obtained from G and R, respectively, by identifying u and v into a single vertex w. Let ϕ^{\prime} be a 3 -coloring of R^{\prime} matching ϕ on $R^{\prime}-w$. Note that G^{\prime} is ϕ^{\prime}-critical, and G^{\prime} contains no cycle of length at most four by (2). Let d be the length of the face f of G incident with the edge $u v$. By (2), if G^{\prime} is
exceptional, then it satisfies (E5); hence G has four faces of length five, a 6 -face and a face of length $l-6$ and $w(G,\{R\})=s(l-6)+s(6)+4 s(5) \leq s(l-5)-5 s(5)$ by (1) and (S4). Therefore, assume that G^{\prime} is not exceptional. By the minimality of G we have $w\left(G^{\prime},\left\{R^{\prime}\right\}\right) \leq s(l-6)-5 s(5)$, and since the face corresponding to f contributes $s(d-1)$ to $w\left(G^{\prime},\left\{R^{\prime}\right\}\right)$, we conclude that $d-1<l-6$. Thus $w(G,\{R\})=w\left(G^{\prime},\left\{R^{\prime}\right\}\right)-s(d-1)+s(d) \leq s(l-6)-5 s(5)-s(d-1)+s(d) \leq$ $s(l-5)-5 s(5)$ by convexity. The case that a vertex v of degree two is incident with a face of length at least 7 is handled similarly, with G^{\prime} obtained either by suppressing v or by identifying its neighbors, depending on whether the colors of these neighbors according to ϕ differ or not. This proves (4).

(5) A good configuration appears in G.

To prove (5) suppose for a contradiction that no good configuration appears in G. By Lemma 8.1 the graph satisfies (I0), (I1) and (I2). By Lemma 8.2, the graph G satisfies (I3) and (I6). By (2) and (4) it satisfies (I4) and (I5). The assumptions (I7) and (I8) are trivially satisfied by planar graphs with only one ring. Let M be the null graph. We deduce from Lemma 5.10 that $w(G, \mathcal{R}) \leq$ $4 n_{2} / 3+52 \epsilon n_{3}-8$, where n_{2} and n_{3} are as in Lemma 5.4. By (I5) we have $n_{2} \leq l / 2$, thus $4 n_{2} / 3+52 \epsilon n_{3} \leq(2 / 3+26 \epsilon) l$. If $l \geq 16$, then

$$
w(G, \mathcal{R}) \leq(2 / 3+26 \epsilon) l-8 \leq l-13-10 \epsilon=s(l-5)-5 s(5)
$$

because $\epsilon \leq 1 / 1278$, a contradiction. Thus we may assume that $l \leq 15$, and hence $n_{2} \leq 7$. If $l=15$, then $w(G, \mathcal{R}) \leq 28 / 3+8 \cdot 52 \epsilon-8 \leq l-13-$ $10 \epsilon=s(l-5)-5 s(5)$, again a contradiction. If $l=13$, then we $n_{2} \leq 6$ and $w(G, \mathcal{R}) \leq 7 \cdot 52 \epsilon \leq s(8)-5 s(5)$.

Suppose that $l=12$. If $n_{2} \leq 5$, then $w(G, \mathcal{R}) \leq 20 / 3+52 \cdot 12 \epsilon-8 \leq$ $0 \leq s(7)-5 s(5)$, because $270 \epsilon \leq s(7) \leq s(8) / 3 \leq(s(7)+s(9)) / 6$ by (S4), implying that $\epsilon \leq 1 / 1350$. Thus we may assume that $n_{2}=6$ and $n_{3}=6$. By Theorem 8.4, all faces sharing an edge with R have length 5 , thus the internal vertices that have a neighbor in R form a 6 -cycle K. By Lemma 8.3 and Theorem 8.4, we have that K bounds a face, thus all its vertices have degree three. This contradicts (I1). It follows that if $l=12$ and $n_{2}=6$, then $n_{3} \leq 5$; thus $w(G, \mathcal{R}) \leq 260 \epsilon \leq s(7)-5 s(5)$ by (S4).

Thus by (1) we may assume that $l=14$. If $n_{2} \leq 6$, then we have $w(G, \mathcal{R}) \leq$ $8 \cdot 52 \epsilon \leq s(9)-5 s(5)$; hence $n_{2}=7$. Furthermore, using Lemma 5.11, we conclude that $b=0$, where b is as in that lemma. Then vertices of degree two and three alternate on R, and every face that shares an edge with R has length five. The neighbors of the vertices of R of degree three form a 7 -cycle, which bounds a face by Theorem 8.4. Then, $w(G,\{R\})=s(7)+7 s(5) \leq s(9)-5 s(5)$. This proves (5).
(6) The graph G is well-behaved.

To prove (6), assume to the contrary that G is not well-behaved. Thus there exists a path P of length at most four, with ends $u, v \in V(R)$ and otherwise disjoint from R, that is not allowable. We may assume that P is such a path of the shortest possible length. By (2), the path P has length at least three.

Let C_{1}, C_{2}, and R be the three cycles of $R \cup P$, and for $i=1,2$ let G_{i} be the subgraph of G consisting of all vertices and edges drawn in the closed disk bounded by C_{i}. We claim that C_{1} and C_{2} are induced cycles. To prove this claim suppose to the contrary that some edge has ends $x, y \in V\left(C_{i}\right)$ for some $i \in\{1,2\}$, but that the edge itself does not belong to C_{i}. Then one of the vertices x and y, say x, belongs to the interior of P, and y does not belong to P. By (2), the vertex x is not a neighbor of u or v, and hence P has length four, and x is the middle vertex of P. Let the vertices of P be $u, u^{\prime}, x, v^{\prime}, v$, in order. Since P was chosen minimal, the two paths $u u^{\prime} x y$ and $v v^{\prime} x y$ are allowable; hence G_{i} consists of two 5 -faces and the path P is allowable, a contradiction. This proves that C_{1} and C_{2} are induced cycles.

It follows from (2) and (4) that G_{1} and G_{2} are not very exceptional and that $G_{i} \neq C_{i}$. By Lemma 8.3 the graph G_{i} is C_{i}-critical for $i=1,2$. Let $l_{i}=\left|C_{i}\right|$. By induction we have

$$
\begin{aligned}
w(G,\{R\}) & =w\left(G_{1},\left\{C_{1}\right\}\right)+w\left(G_{2},\left\{C_{2}\right\}\right) \\
& \leq s\left(l_{1}-5\right)+5 s(5)+s\left(l_{2}-5\right)+5 s(5) \\
& \leq s\left(l_{1}+l_{2}-15\right)+11 s(5) \leq s(l-5)-5 s(5)
\end{aligned}
$$

by convexity and (S4). This proves (6).
It follows from (5), (6) and Lemma 6.1 that some good configuration strongly appears in G, for if the second outcome of Lemma 6.1 holds, then (G, R) either is exceptional or satisfies the conclusion of the theorem. Let γ be a good configuration that strongly appears in G, and let G^{\prime} be the γ-reduction of G. By Lemma 4.1 the 3 -coloring ϕ does not extend to a 3 -coloring of G^{\prime}. Thus G^{\prime} has a ϕ-critical subgraph $G^{\prime \prime}$. By Lemma 6.2 the graph $G^{\prime \prime}$ has no cycles of length at most four (G satisfies (I9) by Lemma 8.3 and Theorem 8.4). By Lemma 8.2, the graph $G^{\prime \prime}$ satisfies (I3) and (I6). Since G is ϕ-critical by (3), $G^{\prime \prime}$ is not a subgraph of G; hence $G^{\prime \prime}$ contains a new vertex or edge.

For a face $f^{\prime \prime}$ of $G^{\prime \prime}$ let $G_{f^{\prime \prime}}^{1}, G_{f^{\prime \prime}}^{2}, \ldots, G_{f^{\prime \prime}}^{k_{f^{\prime \prime}}}$ be the members of the G expansion of $S_{f^{\prime \prime}}$, defined in Section 7, and let $C_{f^{\prime \prime}}^{1}, C_{f^{\prime \prime}}^{2}, \ldots, C_{f^{\prime \prime}}^{k_{f}^{\prime \prime}}$ be the corresponding rings so that $C_{f^{\prime \prime}}^{i}$ is a subgraph of $G_{f^{\prime \prime}}^{i}$.

$$
\begin{align*}
& \text { Let } f^{\prime \prime} \text { be a face of } G^{\prime \prime} \text {. Then } \tag{7}\\
& \qquad \sum_{i=1}^{k_{f^{\prime \prime}}} w\left(G_{f^{\prime \prime}}^{i},\left\{C_{f^{\prime \prime}}^{i}\right\}\right) \leq s\left(\left|f^{\prime \prime}\right|\right)-c\left(f^{\prime \prime}\right) .
\end{align*}
$$

Note that by Lemma 8.3, we have that either $G_{f^{\prime \prime}}^{i}=C_{f^{\prime \prime}}^{i}$ or $G_{f^{\prime \prime}}^{i}$ is $C_{f^{\prime \prime}}^{i}$ critical for each i. To prove (7), let us discuss the possible cases in the definition of the contribution of a face:

- If $\left|S_{f^{\prime \prime}}\right|=1$ and $G_{f^{\prime \prime}}^{1}$ satisfies (E0), then by Lemma 7.4 we have $c\left(f^{\prime \prime}\right) \neq$ $-\infty$, hence $f^{\prime \prime}$ has zero elasticity, $c\left(f^{\prime \prime}\right)=0$ and $w\left(G_{f^{\prime \prime}}^{1},\left\{C_{f^{\prime \prime}}^{1}\right\}\right)=s\left(\left|f^{\prime \prime}\right|\right)$.
- If $\left|S_{f^{\prime \prime}}\right|=1$ and $G_{f^{\prime \prime}}^{1}$ satisfies (E1), then similarly we have el $\left(f^{\prime \prime}\right)<5$ and $c\left(f^{\prime \prime}\right)=s\left(8-\operatorname{el}\left(f^{\prime \prime}\right)\right)-2 s(5)$. Note that by Lemma 7.1 we have el $\left(f^{\prime \prime}\right) \leq 3$. By induction, $w\left(G_{f^{\prime \prime}}^{1},\left\{C_{f^{\prime \prime}}^{1}\right\}\right) \leq s\left(\left|C_{f^{\prime \prime}}^{1}\right|-3\right)+s(5)=s\left(\left|f^{\prime \prime}\right|+\mathrm{el}\left(f^{\prime \prime}\right)-\right.$ $3)+s(5)$, and $s\left(\left|f^{\prime \prime}\right|+\mathrm{el}\left(f^{\prime \prime}\right)-3\right)+s(5) \leq s\left(\left|f^{\prime \prime}\right|\right)-s\left(8-\mathrm{el}\left(f^{\prime \prime}\right)\right)+2 s(5)$ by convexity.
- If $\left|S_{f^{\prime \prime}}\right|=1$ and $G_{f^{\prime \prime}}^{1}$ satisfies (E2), then $\operatorname{el}(f) \leq 3, c\left(f^{\prime \prime}\right)=s\left(9-\operatorname{el}\left(f^{\prime \prime}\right)\right)-$ $3 s(5)$, and $w\left(G_{f^{\prime \prime}}^{1},\left\{C_{f^{\prime \prime}}^{1}\right\}\right)=s\left(\left|C_{f^{\prime \prime}}^{1}\right|-4\right)+2 s(5)=s\left(\left|f^{\prime \prime}\right|+\operatorname{el}\left(f^{\prime \prime}\right)-4\right)+$ $2 s(5) \leq s\left(\left|f^{\prime \prime}\right|\right)-c\left(f^{\prime \prime}\right)$ by convexity.
- If $\left|S_{f^{\prime \prime}}\right|=1$ and $G_{f^{\prime \prime}}^{1}$ satisfies (E3), then $c\left(f^{\prime \prime}\right)=s\left(11-\operatorname{el}\left(f^{\prime \prime}\right)\right)-2 s(6)-$ $s(5)$ and $w\left(G_{f^{\prime \prime}}^{1},\left\{C_{f^{\prime \prime}}^{1}\right\}\right)=s\left(\left|C_{f^{\prime \prime}}^{1}\right|-5\right)+s(5)+s(6)=s\left(\left|f^{\prime \prime}\right|+\operatorname{el}\left(f^{\prime \prime}\right)-\right.$ $5)+s(5)+s(6) \leq s\left(\left|f^{\prime \prime}\right|\right)-c\left(f^{\prime \prime}\right)$.
- If $\left|S_{f^{\prime \prime}}\right|=1$ and $G_{f^{\prime \prime}}^{1}$ satisfies (E4) or (E5), then $c\left(f^{\prime \prime}\right)=s\left(10-\operatorname{ll}\left(f^{\prime \prime}\right)\right)-$ $6 s(5)$ and $w\left(G_{f^{\prime \prime}}^{1},\left\{C_{f^{\prime \prime}}^{1}\right\}\right) \leq s\left(\left|C_{f^{\prime \prime}}^{1}\right|-5\right)+5 s(5)=s\left(\left|f^{\prime \prime}\right|+\operatorname{el}\left(f^{\prime \prime}\right)-5\right)+$ $5 s(5) \leq s\left(\left|f^{\prime \prime}\right|\right)-c\left(f^{\prime \prime}\right)$.
- Suppose that $k_{f^{\prime \prime}}=2, G_{f^{\prime \prime}}^{1}=C_{f^{\prime \prime}}^{1}$ and $G_{f^{\prime \prime}}^{2}=C_{f^{\prime \prime}}^{2}$, where $\left|C_{f^{\prime \prime}}^{1}\right| \leq\left|C_{f^{\prime \prime}}^{2}\right|$. If $\left|C_{f^{\prime \prime}}^{1}\right|=5$, then $c\left(f^{\prime \prime}\right)=s\left(10-\operatorname{el}\left(f^{\prime \prime}\right)\right)-6 s(5)$ and $w\left(G_{f^{\prime \prime}}^{1},\left\{C_{f^{\prime \prime}}^{1}\right\}\right)+$ $w\left(G_{f^{\prime \prime}}^{2},\left\{C_{f^{\prime \prime}}^{2}\right\}\right)=s\left(\left|C_{f^{\prime \prime}}^{2}\right|\right)+s(5)=s\left(\left|f^{\prime \prime}\right|+\operatorname{el}\left(f^{\prime \prime}\right)-5\right)+s(5)<s\left(\left|f^{\prime \prime}\right|\right)-$ $c\left(f^{\prime \prime}\right)$. Otherwise, $c\left(f^{\prime \prime}\right)=s\left(12-\operatorname{el}\left(f^{\prime \prime}\right)\right)-2 s(6)$ and $w\left(G_{f^{\prime \prime}}^{1},\left\{C_{f^{\prime \prime}}^{1}\right\}\right)+$ $w\left(G_{f^{\prime \prime}}^{2},\left\{C_{f^{\prime \prime}}^{2}\right\}\right)=s\left(\left|C_{f^{\prime \prime}}^{1}\right|\right)+s\left(\left|C_{f^{\prime \prime}}^{2}\right|\right) \leq s(6)+s\left(\left|f^{\prime \prime}\right|+\operatorname{el}\left(f^{\prime \prime}\right)-6\right) \leq$ $s\left(\left|f^{\prime \prime}\right|\right)-c\left(f^{\prime \prime}\right)$.
- Suppose that $k_{f^{\prime \prime}}=1$ and $G_{f^{\prime \prime}}^{1}$ is not exceptional.
- Let us consider the case that $G_{f^{\prime \prime}}^{1}$ contains a path $P=v_{1} v_{2} v_{3} v_{4}$ such that $v_{1}, v_{4} \in V\left(C_{f^{\prime \prime}}^{1}\right), v_{2}, v_{3} \notin V\left(C_{f^{\prime \prime}}^{1}\right)$ and both of the open disks Δ_{1} and Δ_{2} bounded by P and paths in $C_{f^{\prime \prime}}^{1}$ contain at least two vertices of G. In this case, $c\left(f^{\prime \prime}\right)=s(7)$. Let H_{i} be the subgraph of $G_{f^{\prime \prime}}^{1}$ drawn in Δ_{i} and K_{i} the cycle bounding Δ_{i}, for $i \in\{1,2\}$. Neither H_{1} nor H_{2} is very exceptional, thus we have $w\left(G_{f^{\prime \prime}}^{1},\left\{C_{f^{\prime \prime}}^{1}\right\}\right)=$ $w\left(H_{1}, K_{1}\right)+w\left(H_{2}, K_{2}\right) \leq s\left(\left|K_{1}\right|-5\right)+s\left(\left|K_{2}\right|-5\right)+10 s(5) \leq s\left(\left|K_{1}\right|+\right.$ $\left.\left|K_{2}\right|-15\right)+11 s(5)=s\left(\left|f^{\prime \prime}\right|+\operatorname{el}\left(f^{\prime \prime}\right)-9\right)+11 s(5)<s\left(\left|f^{\prime \prime}\right|\right)-s(7)$, since $\operatorname{el}\left(f^{\prime \prime}\right) \leq 5$ and $\left|f^{\prime \prime}\right|+\operatorname{el}\left(f^{\prime \prime}\right) \geq\left|K_{1}\right|+\left|K_{2}\right|-6 \geq 14$, because $G^{\prime \prime}$ satisfies (I9) by Lemma 8.3 and Theorem 8.4.
- Otherwise, $c\left(f^{\prime \prime}\right)=s\left(11-\operatorname{el}\left(f^{\prime \prime}\right)\right)-s(6)+5 s(5)$. In this case, we have $w\left(G_{f^{\prime \prime}}^{1},\left\{C_{f^{\prime \prime}}^{1}\right\}\right) \leq s\left(\left|C_{f^{\prime \prime}}^{1}\right|-5\right)-5 s(5)=s\left(\left|f^{\prime \prime}\right|+\operatorname{el}\left(f^{\prime \prime}\right)-5\right)-5 s(5) \leq$ $s\left(\left|f^{\prime \prime}\right|\right)-c\left(f^{\prime \prime}\right)$.
- If $k_{f^{\prime \prime}}=2$ and $G_{f^{\prime \prime}}^{1} \neq C_{f^{\prime \prime}}^{1}$, then $c\left(f^{\prime \prime}\right)=s\left(12-\operatorname{el}\left(f^{\prime \prime}\right)\right)-2 s(6)$ and $w\left(G_{f^{\prime \prime}}^{1},\left\{C_{f^{\prime \prime}}^{1}\right\}\right)+w\left(G_{f^{\prime \prime}}^{2},\left\{C_{f^{\prime \prime}}^{2}\right\}\right) \leq s\left(\left|C_{f^{\prime \prime}}^{1}\right|-3\right)+s(5)+s\left(\left|C_{f^{\prime \prime}}^{2}\right|\right) \leq s\left(\left|f^{\prime \prime}\right|+\right.$ $\left.\mathrm{el}\left(f^{\prime \prime}\right)-8\right)+2 s(5)<s\left(\left|f^{\prime \prime}\right|\right)-c\left(f^{\prime \prime}\right)$
- If $k_{f^{\prime \prime}} \geq 3$, then $c\left(f^{\prime \prime}\right)=s\left(12-\operatorname{el}\left(f^{\prime \prime}\right)\right)-2 s(6)$ and $\sum_{i=1}^{k_{f^{\prime \prime}}} w\left(G_{f^{\prime \prime}}^{i},\left\{C_{f^{\prime \prime}}^{i}\right\}\right) \leq$ $s\left(\left|f^{\prime \prime}\right|+\operatorname{el}\left(f^{\prime \prime}\right)-\left(k_{f^{\prime \prime}}-1\right) 5\right)+\left(k_{f^{\prime \prime}}-1\right) s(5)<s\left(\left|f^{\prime \prime}\right|\right)-c\left(f^{\prime \prime}\right)$.

Therefore, in all the cases, (7) holds.
By Lemma 7.2 , we have $w(G,\{R\}) \leq \delta+\sum_{f^{\prime \prime} \in \mathcal{F}\left(G^{\prime \prime}\right)} \sum_{i=1}^{k_{f^{\prime \prime}}} w\left(G_{f^{\prime \prime}}^{i},\left\{C_{f^{\prime \prime}}^{i}\right\}\right)$, where $\delta=s(6)$ if γ is isomorphic to R3 and $\delta=0$ otherwise. By (7) this implies that

$$
\begin{aligned}
w(G,\{R\}) & \leq \delta+\sum_{f^{\prime \prime} \in \mathcal{F}\left(G^{\prime \prime}\right)}\left(s\left(\left|f^{\prime \prime}\right|\right)-c\left(f^{\prime \prime}\right)\right) \\
& =w\left(G^{\prime \prime},\{R\}\right)+\delta-\sum_{f^{\prime \prime} \in \mathcal{F}\left(G^{\prime \prime}\right)} c\left(f^{\prime \prime}\right) \\
& =w\left(G^{\prime \prime},\{R\}\right)-c\left(G^{\prime \prime}\right) .
\end{aligned}
$$

By Lemma 7.3, $G^{\prime \prime}$ is not very exceptional; hence $w\left(G^{\prime \prime},\{R\}\right) \leq s(l-5)+5 s(5)$ by induction. Note that $c\left(G^{\prime \prime}\right) \geq 10 s(5)$ by Lemma 7.4 ; thus

$$
w(G,\{R\}) \leq w\left(G^{\prime \prime},\{R\}\right)-c\left(G^{\prime \prime}\right) \leq s(l-5)-5 s(5)
$$

which is a contradiction finishing the proof of the theorem.
Proof of Theorem 1.6. Let $\epsilon=2 / 4113, s(5)=4 / 4113, s(6)=72 / 4113$, $s(7)=540 / 4113, s(8)=2184 / 4113$, and $s(l)=l-8$ for $l \geq 9$. Then conditions (S1)-(S4) hold. Furthermore, note that $s(l-3)+s(5)<s(l)$ for all $l \geq 8$.

Let G be a plane graph of girth at least five with a cycle C and let ϕ be a precoloring of C that does not extend to a 3 -coloring of G. We may assume that G is ϕ-critical, and hence C is a face of G. By Theorem 8.5, we have $w(G,\{C\}) \leq s(|C|-3)+s(5)<|V(C)|$. Note that $3|V(G)|-2|V(C)|=\sum_{f}|f| \leq$ $\sum_{f} 5 s(|f|) / s(5)=5 w(G,\{C\}) / s(5)$, where the sum is over all faces of G, except the one bounded by C. Therefore, $|V(G)| \leq(5 / s(5)+2)|V(C)| / 3 \leq 1715|V(C)|$, as desired.

9 Summary

In this section, we provide a summary result that will be used as a basis for the proofs in the next paper of the series, to avoid the need to repeat many of the definitions used here. Let Π be a surface with boundary and c a simple curve intersecting the boundary of Π exactly in its ends. The compact topological space obtained from Π by cutting along c (i.e., removing c and adding two new pieces of boundary corresponding to c) is a union of at most two surfaces. If surfaces Π_{1}, \ldots, Π_{k} are obtained from Π by repeating this construction, we say that they are fragments of Π.

Consider a graph H embedded in Π with rings \mathcal{Q}, and let f be a face of H. Let Π_{f} be a surface whose interior is homeomorphic; note that Π_{f} is unique up to homeomorphism and that the cuffs of Π_{f} correspond to the facial walks of f.

Let G and G^{\prime} be \mathcal{R}-critical graphs embedded in Σ with rings \mathcal{R}. Suppose that there exists a collection $\left\{\left(J_{f}, S_{f}\right): f \in F\left(G^{\prime}\right)\right\}$ of subgraphs J_{f} of G and sets S_{f} of faces of $J_{f} \cup \bigcup \mathcal{R}$ such that J_{f} is the union of the boundary walks of S_{f}, and a set $X \subset F(G)$ such that

- for every $f \in F\left(G^{\prime}\right)$, the boundary of S_{f} is not equal to the union of \mathcal{R},
- for every $f \in F\left(G^{\prime}\right)$, the surfaces of the G-expansion of S_{f} are fragments of Σ_{f},
- for every face $h \in F(G) \backslash X$, there exists unique $f \in F\left(G^{\prime}\right)$ such that h is subset of a member of S_{f}, and
- if $X \neq \emptyset$, then X consists of a single closed 2-cell face of length 6 .

We say that X together with this collection forms a cover of G by faces of G^{\prime}. For a face $f \in F\left(G^{\prime}\right)$, let $\operatorname{el}(f)=\left(\sum_{h \in S_{f}}|h|\right)-|f|$.

Theorem 9.1. Let G be a well-behaved graph embedded in a surface Σ with rings \mathcal{R} satisfying (I0)-(I9) and let M be a subgraph of G that captures (≤ 4)cycles. Let $\ell(\mathcal{R})$ be the sum of the lengths of the rings in \mathcal{R} and g the Euler genus of Σ, and assume that $g>0$ or $|\mathcal{R}|>1$. Let ϵ be a real number satisfying $0<\epsilon \leq 1 / 1278$, let $s:\{5,6, \ldots\} \rightarrow \mathbb{R}$ be a function satisfying (S1)-(S4), and suppose that $w(G, \mathcal{R})>8 g+8|\mathcal{R}|+(2 / 3+26 \epsilon) \ell(\mathcal{R})+20|E(M)| / 3-16$. If G is \mathcal{R}-critical, then there exists an \mathcal{R}-critical graph G^{\prime} embedded in Σ with rings \mathcal{R} such that $\left|E\left(G^{\prime}\right)\right|<|E(G)|$, every vertex-like ring of G is also vertex-like in G^{\prime}, and the following conditions hold.

1. If G has girth at least five, then there exists a set $Y \subseteq V\left(G^{\prime}\right)$ of size at most two such that $G^{\prime}-Y$ has girth at least five.
2. If C^{\prime} is a (≤ 4)-cycle in G^{\prime}, then C^{\prime} is non-contractible and G contains a non-contractible cycle C of length at most $\left|C^{\prime}\right|+3$ such that $C \nsubseteq M$. Furthermore, all ring vertices of C^{\prime} belong to C, and if C^{\prime} is a triangle disjoint from the rings and its vertices have distinct pairwise non-adjacent neighbors in a ring R of length 6 , then G contains edges $c r$ and $c^{\prime} r^{\prime}$ with $c, c^{\prime} \in V(C) \backslash V(R)$ and $r, r^{\prime} \in V(R) \backslash V(C)$ such that r and r^{\prime} are nonadjacent.
3. G^{\prime} has a face that either is not semi-closed 2 -cell or has length at least 6 .
4. There exists $X \subset F(G)$ and a collection $\left\{\left(J_{f}, S_{f}\right): f \in F\left(G^{\prime}\right)\right\}$ forming a cover of G by faces of G^{\prime} satisfying the following conditions.
(a) For a semi-closed 2-cell or omnipresent face $f \in F\left(G^{\prime}\right)$, let its contribution $c(f)$ be defined as in Section 7. Then $\sum_{f \in F\left(G^{\prime}\right)}$ el $(f) \leq 10$ and if f is an omnipresent face, then el $(f) \leq 5$. Furthermore, if every face of G^{\prime} is semi-closed 2 -cell or omnipresent, G^{\prime} satisfies (I6), and every vertex-like ring of G^{\prime} is also vertex-like in G, then $\sum_{f \in F\left(G^{\prime}\right)} c(f) \geq|X| s(6)$.
(b) If every vertex-like ring of G^{\prime} is also vertex-like in $G, f \in F\left(G^{\prime}\right)$ is semi-closed 2 -cell and G_{1}, \ldots, G_{k} are the components of the G expansion of S_{f}, where for $1 \leq i \leq k, G_{i}$ is embedded in a disk with one ring R_{i}, then $\sum_{i=1}^{k} w\left(G_{i},\left\{R_{i}\right\}\right) \leq s(|f|)-c(f)$.

Proof. Let n_{2} be the number of ring vertices of degree two not belonging to M and let n_{3} be the number of ring vertices of degree three. By (I5) we have $n_{2} \leq \ell(R) / 2$, and since $n_{2}+n_{3} \leq \ell(R)$, we have $4 n_{2} / 3+52 \epsilon n_{3} \leq(2 / 3+26 \epsilon) \ell(R)$. Consequently, $w(G, \mathcal{R})>8 g+\overline{8}|\mathcal{R}|+4 n_{2} / 3+52 \epsilon n_{3}+20|E(M)| / 3-16$, and by Lemma 5.10, a good configuration γ appears in G and does not touch M. By Lemma 6.1, we can assume that γ appears strongly in G. Let ϕ be a precoloring of \mathcal{R} that does not extend to a 3 -coloring of G, and let G_{1} be a γ-reduction of G with respect to ϕ. By Lemma 4.1, ϕ does not extend to a 3 -coloring of G_{1}, and thus G_{1} contains an \mathcal{R}-critical subgraph G^{\prime}. Since G^{\prime} is \mathcal{R}-critical, it satisfies (I0). Clearly, $\left|E\left(G^{\prime}\right)\right|<|E(G)|$. Let us now show that G^{\prime} has the required properties:

1. If G has girth at least five, then every (≤ 4)-cycle in G^{\prime} contains a new vertex or a new edge, and thus they can all be intersected by at most two vertices.

2. Follows from Lemma 6.2.

3. Suppose that all faces of G^{\prime} are semi-closed 2-cell. In particular, G^{\prime} does not have an omnipresent face, and thus it satisfies (I6). If G^{\prime} contains a new edge or a new vertex, then the claim holds by Lemma 7.4. Otherwise, G^{\prime} is a proper subgraph of G, and thus there exists a cycle C bounding a face in G^{\prime}, but not in G. Let H be the subgraph of G drawn in the closed disk bounded by C. By Lemma 8.3, H is C-critical, and by Theorem 8.4, we conclude that C has length at least 8 .
4. For each $f \in F\left(G^{\prime}\right)$, we define S_{f} and J_{f} as in Section 7. As G^{\prime} is not equal to the union of \mathcal{R}, the boundary of S_{f} is distinct from the union of \mathcal{R} for each $f \in F\left(G^{\prime}\right)$. The construction of J_{f} and S_{f} ensures that the surfaces corresponding to the faces of S_{f} are constructed from Σ_{f} by cutting along simple curves with ends in cuffs, as described in the definition of fragments. By Lemma 7.2, there exists a set $X \subset F(G)$ (which is either empty or consists of one 6 -face) such that X together with the collection $\left\{\left(J_{f}, S_{f}\right): f \in F\left(G^{\prime}\right)\right\}$ is a cover of G by faces of G^{\prime}. Let us argue that it has the properties asserted by the lemma:
(a) The first part follows from Lemma 7.1. If G^{\prime} contains a new vertex or a new edge, then the second part follows from Lemma 7.4. Otherwise, G^{\prime} is a proper subgraph of G and all its faces have elasticity 0 . If f is a semi-closed 2-cell of G^{\prime}, then $c(f) \geq 0$, and if additionally f is not a face of G, then $c(f) \geq s(8)-2 s(5)>s(6)$. If f is an omnipresent face, then note that no component of G^{\prime} satisfies (E1), (E2) or (E3), since G satisfies (I4). Since G^{\prime} is \mathcal{R}-critical, at least one component
of G^{\prime} does not satisfy (E0), and thus $c(f) \geq 5-5 s(5)>s(6)$. Since $G^{\prime} \neq G$, we conclude that $\sum_{f \in F\left(G^{\prime}\right)} c(f)>s(6) \geq|X| s(6)$.
(b) This was proved as (7) in Section 8.

References

[1] Bondy, J., and Murty, U. Graph Theory with Applications. NorthHolland, New York, Amsterdam, Oxford, 1976.
[2] Dvořák, Z., and Kawarabayashi, K. Choosability of planar graphs of girth 5. ArXiv e-prints 1109.2976 (2011).
[3] Dvořák, Z., Kawarabayashi, K., and Thomas, R. Three-coloring triangle-free planar graphs in linear time. Trans. on Algorithms 7 (2011), article no. 41 .
[4] Dvořák, Z., Král', D., and Thomas, R. Three-coloring triangle-free graphs on surfaces III. Graphs of girth five. ArXiv e-prints 1402.4710 (Feb. 2014).
[5] Dvořák, Z., Král', D., and Thomas, R. Three-coloring triangle-free graphs on surfaces IV. Bounding face sizes of 4-critical graphs. ArXiv eprints $1404.6356 v 4$ (May 2015).
[6] Dvořák, Z., Král', D., and Thomas, R. Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies. ArXiv e-prints $0911.0885 v 3$ (Jan. 2016).
[7] Gimbel, J., and Thomassen, C. Coloring graphs with fixed genus and girth. Trans. Amer. Math. Soc. 349 (1997), 4555-4564.
[8] Grötzsch, H. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 8 (1959), 109-120.
[9] Havel, I. On a conjecture of Grünbaum. J. Combin. Theory Ser. B 7 (1969), 184-186.
[10] Kostochka, A. V., and Yancey, M. Ore's conjecture for $\mathrm{k}=4$ and Grötzsch Theorem. Manuscript.
[11] Postle, L., and Thomas, R. Hyperbolic families and coloring graphs on surfaces. ArXiv e-prints 1609.06749 (Sept. 2016).
[12] Thomas, R., and Walls, B. Three-coloring Klein bottle graphs of girth five. J. Combin. Theory Ser. B 92 (2004), 115-135.
[13] Thomassen, C. Grötzsch's 3-color theorem and its counterparts for the torus and the projective plane. J. Combin. Theory Ser. B62 (1994), 268279.
[14] Thomassen, C. 3-list coloring planar graphs of girth 5. J. Combin. Theory Ser. B 64 (1995), 101-107.
[15] Thomassen, C. The chromatic number of a graph of girth 5 on a fixed surface. J. Combin. Theory Ser. B 87 (2003), 38-71.
[16] Thomassen, C. A short list color proof of Grotzsch's theorem. J. Combin. Theory Ser. B 88 (2003), 189-192.
[17] Walls, B. Coloring girth restricted graphs on surfaces. PhD thesis, Georgia Institute of Technology, 1999.
[18] Youngs, D. 4-chromatic projective graphs. Journal of Graph Theory 21 (1996), 219-227.

[^0]: *Supported by grant GACR 201/09/0197 of Czech Science Foundation.
 ${ }^{\dagger}$ Computer Science Institute (CSI) of Charles University, Malostranské náměstí 25, 11800 Prague, Czech Republic. E-mail: rakdver@iuuk.mff.cuni.cz. Supported by the Center of Excellence - Inst. for Theor. Comp. Sci., Prague, project P202/12/G061 of Czech Science Foundation.
 \ddagger Warwick Mathematics Institute, DIMAP and Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom. E-mail: D.Kral@warwick.ac.uk.
 §School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332. E-mail: thomas@math.gatech.edu. Partially supported by NSF Grants No. DMS-0739366 and DMS1202640.

