27 research outputs found

    On choosability with separation of planar graphs with lists of different sizes

    Get PDF
    A (k,d)(k,d)-list assignment LL of a graph GG is a mapping that assigns to each vertex vv a list L(v)L(v) of at least kk colors and for any adjacent pair xyxy, the lists L(x)L(x) and L(y)L(y) share at most dd colors. A graph GG is (k,d)(k,d)-choosable if there exists an LL-coloring of GG for every (k,d)(k,d)-list assignment LL. This concept is also known as choosability with separation. It is known that planar graphs are (4, 1)-choosable but it is not known if planar graphs are (3, 1)-choosable. We strengthen the result that planar graphs are (4, 1)-choosable by allowing an independent set of vertices to have lists of size 3 instead of 4. Our strengthening is motivated by the observation that in (4, 1)-list assignment, vertices of an edge have together at least 7 colors, while in (3, 1)-list assignment, they have only at least 5. Our setting gives at least 6 colors

    On List Coloring with Separation of the Complete Graph and Set System Intersections

    Full text link
    We consider the following list coloring with separation problem: Given a graph GG and integers a,ba,b, find the largest integer cc such that for any list assignment LL of GG with ∣L(v)∣=a|L(v)|= a for any vertex vv and ∣L(u)∩L(v)∣≤c|L(u)\cap L(v)|\le c for any edge uvuv of GG, there exists an assignment φ\varphi of sets of integers to the vertices of GG such that φ(u)⊂L(u)\varphi(u)\subset L(u) and ∣φ(v)∣=b|\varphi(v)|=b for any vertex uu and φ(u)∩φ(v)=∅\varphi(u)\cap \varphi(v)=\emptyset for any edge uvuv. Such a value of cc is called the separation number of (G,a,b)(G,a,b). Using a special partition of a set of lists for which we obtain an improved version of Poincar\'e's crible, we determine the separation number of the complete graph KnK_n for some values of a,ba,b and nn, and prove bounds for the remaining values.Comment: 18 page

    (4, 2)-Choosability of Planar Graphs with Forbidden Structures

    Get PDF
    All planar graphs are 4-colorable and 5-choosable, while some planar graphs are not 4-choosable. Determining which properties guarantee that a planar graph can be colored using lists of size four has received significant attention. In terms of constraining the structure of the graph, for any ℓ ∈ {3, 4, 5, 6, 7}, a planar graph is 4-choosable if it is ℓ-cycle-free. In terms of constraining the list assignment, one refinement of k-choosability is choosability with separation. A graph is (k, s)-choosable if the graph is colorable from lists of size k where adjacent vertices have at most s common colors in their lists. Every planar graph is (4, 1)-choosable, but there exist planar graphs that are not (4, 3)-choosable. It is an open question whether planar graphs are always (4, 2)-choosable. A chorded ℓ-cycle is an ℓ-cycle with one additional edge. We demonstrate for each ℓ ∈ {5, 6, 7} that a planar graph is (4, 2)-choosable if it does not contain chorded ℓ-cycles

    List-coloring and sum-list-coloring problems on graphs

    Get PDF
    Graph coloring is a well-known and well-studied area of graph theory that has many applications. In this dissertation, we look at two generalizations of graph coloring known as list-coloring and sum-list-coloring. In both of these types of colorings, one seeks to first assign palettes of colors to vertices and then choose a color from the corresponding palette for each vertex so that a proper coloring is obtained. A celebrated result of Thomassen states that every planar graph can be properly colored from any arbitrarily assigned palettes of five colors. This result is known as 5-list-colorability of planar graphs. Albertson asked whether Thomassen\u27s theorem can be extended by precoloring some vertices which are at a large enough distance apart. Hutchinson asked whether Thomassen\u27s theorem can be extended by allowing certain vertices to have palettes of size less than five assigned to them. In this dissertation, we explore both of these questions and answer them in the affirmative for various classes of graphs. We also provide a catalog of small configurations with palettes of different prescribed sizes and determine whether or not they can always be colored from palettes of such sizes. These small configurations can be useful in reducing certain planar graphs to obtain more information about their structure. Additionally, we look at the newer notion of sum-list-coloring where the sum choice number is the parameter of interest. In sum-list-coloring, we seek to minimize the sum of varying sizes of palettes of colors assigned the vertices of a graph. We compute the sum choice number for all graphs on at most five vertices, present some general results about sum-list-coloring, and determine the sum choice number for certain graphs made up of cycles
    corecore