28 research outputs found

    On Capacity Scaling in Arbitrary Wireless Networks

    Full text link
    In recent work, Ozgur, Leveque, and Tse (2007) obtained a complete scaling characterization of throughput scaling for random extended wireless networks (i.e., nn nodes are placed uniformly at random in a square region of area nn). They showed that for small path-loss exponents α∈(2,3]\alpha\in(2,3] cooperative communication is order optimal, and for large path-loss exponents α>3\alpha > 3 multi-hop communication is order optimal. However, their results (both the communication scheme and the proof technique) are strongly dependent on the regularity induced with high probability by the random node placement. In this paper, we consider the problem of characterizing the throughput scaling in extended wireless networks with arbitrary node placement. As a main result, we propose a more general novel cooperative communication scheme that works for arbitrarily placed nodes. For small path-loss exponents α∈(2,3]\alpha \in (2,3], we show that our scheme is order optimal for all node placements, and achieves exactly the same throughput scaling as in Ozgur et al. This shows that the regularity of the node placement does not affect the scaling of the achievable rates for α∈(2,3]\alpha\in (2,3]. The situation is, however, markedly different for large path-loss exponents α>3\alpha >3. We show that in this regime the scaling of the achievable per-node rates depends crucially on the regularity of the node placement. We then present a family of schemes that smoothly "interpolate" between multi-hop and cooperative communication, depending upon the level of regularity in the node placement. We establish order optimality of these schemes under adversarial node placement for α>3\alpha > 3.Comment: 38 pages, 6 figures, to appear in IEEE Transactions on Information Theor

    Information-theoretic Capacity of Clustered Random Networks

    Full text link
    We analyze the capacity scaling laws of clustered ad hoc networks in which nodes are distributed according to a doubly stochastic shot-noise Cox process. We identify five different operational regimes, and for each regime we devise a communication strategy that allows to achieve a throughput to within a poly-logarithmic factor (in the number of nodes) of the maximum theoretical capacity.Comment: 6 pages, in Proceedings of ISIT 201

    Information Theoretic Operating Regimes of Large Wireless Networks

    Get PDF
    In analyzing the point-to-point wireless channel, insights about two qualitatively different operating regimes--bandwidth- and power-limited--have proven indispensable in the design of good communication schemes. In this paper, we propose a new scaling law formulation for wireless networks that allows us to develop a theory that is analogous to the point-to-point case. We identify fundamental operating regimes of wireless networks and derive architectural guidelines for the design of optimal schemes. Our analysis shows that in a given wireless network with arbitrary size, area, power, bandwidth, etc., there are three parameters of importance: the short-distance SNR, the long-distance SNR, and the power path loss exponent of the environment. Depending on these parameters we identify four qualitatively different regimes. One of these regimes is especially interesting since it is fundamentally a consequence of the heterogeneous nature of links in a network and does not occur in the point-to-point case; the network capacity is {\em both} power and bandwidth limited. This regime has thus far remained hidden due to the limitations of the existing formulation. Existing schemes, either multihop transmission or hierarchical cooperation, fail to achieve capacity in this regime; we propose a new hybrid scheme that achieves capacity.Comment: 12 pages, 5 figures, to appear in IEEE Transactions on Information Theor

    Parallel Opportunistic Routing in Wireless Networks

    Full text link
    We study benefits of opportunistic routing in a large wireless ad hoc network by examining how the power, delay, and total throughput scale as the number of source- destination pairs increases up to the operating maximum. Our opportunistic routing is novel in a sense that it is massively parallel, i.e., it is performed by many nodes simultaneously to maximize the opportunistic gain while controlling the inter-user interference. The scaling behavior of conventional multi-hop transmission that does not employ opportunistic routing is also examined for comparison. Our results indicate that our opportunistic routing can exhibit a net improvement in overall power--delay trade-off over the conventional routing by providing up to a logarithmic boost in the scaling law. Such a gain is possible since the receivers can tolerate more interference due to the increased received signal power provided by the multi-user diversity gain, which means that having more simultaneous transmissions is possible.Comment: 18 pages, 7 figures, Under Review for Possible Publication in IEEE Transactions on Information Theor
    corecore