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Abstract— In analyzing the point-to-point wireless channel,
insights about two qualitatively different operating regimes—
bandwidth- and power-limited—have proven indispensablen the
design of good communication schemes. In this paper, we prope
a new scaling law formulation for wireless networks that albws
us to develop a theory that is analogous to the point-to-poircase.
We identify fundamental operating regimes of wireless netwrks
and derive architectural guidelines for the design of optinal
schemes.

Our analysis shows that in a given wireless network with arbi
trary size, area, power, bandwidth, etc., there are three pam-
eters of importance: the short-distance SNR, the long-disince
SNR, and the power path loss exponent of the environment.
Depending on these parameters we identify four qualitativiy
different regimes. One of these regimes is especially intesting
since it is fundamentally a consequence of the heterogeneou
nature of links in a network and does not occur in the point-te
point case; the network capacity isboth power and bandwidth
limited. This regime has thus far remained hidden due to the
limitations of the existing formulation. Existing schemes either
multihop transmission or hierarchical cooperation, fail to achieve
capacity in this regime; we propose a new hybrid scheme that
achieves capacity.

Index Terms— Ad hoc Wireless Networks, Distributed MIMO,
Hierarchical Cooperation, Multihopping, Operating Regimes,
Scaling Laws.

I. INTRODUCTION

The classic capacity formul&@ = W log,(1 + P./NoW)
bits/s of a point-to-point AWGN channel with bandwidii

dB, the capacity is approximately linear in the power and
the performance depends critically on the power available
but not so much on the bandwidth. In the bandwidth-limited
(or high SNR) regime, where SNB- 0 dB, the capacity is
approximately linear in the bandwidth and the performance
depends critically on the bandwidth but not so much on the
power. The regime is determined by the interplay between
the amount of power and degrees of freedom available. The
design of good communication schemes is primarily driven by
the parameter regime one is in.

Can analogous operating regimes be identified for ad hoc
wireless networks, with multiple source and destinatioinspa
and nodes relaying information for each other? To addréss th
guestion, we are confronted with several problems. First, w
have no exact formula for the capacity of networks, even in
the simplest case of a single source-destination pair phes o
relay. Second, unlike in the point-to-point case, thereas n
single received SNR parameter in a network. The channels
between nodes closer together can be in the high SNR regime
while those between nodes farther away can be in the low
SNR regime.

One approach to get around the first problem is through the
scaling law formulation. Pioneered by Gupta and Kumar [1],
this approach seeks not the exact capacity of the network but
only how itscaleswith the number of nodes in the network and
the number of source-destination pairs. The capacity ragali
turns out to depend critically on how the area of the network

Hz, received powetP, Watts, and white noise with powerscales with the number of nodes. Two network models have

spectral densityV,/2 Watts/Hz plays a central role in com-

been considered in the literature. diense networks [1], [2],

munication system design. The formula not only quantifies el], the area is fixed while the density of the nodes increases
actly the performance limit of communication in terms of-sydinearly with the number of nodes. lextended networks [3],

tem parameters, but perhaps more importantly also idestiflé], [5], [6], [7], [8], [9], the area grows linearly with the
two fundamentally different operating regimes. In the pewenumber of nodes while the density is fixed. For a given path

limited (or low SNR) regime, where SNR= P, /NoW < 0
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loss exponent, the area of the network determines the amount
of power that can be transferred across the network and so
these different scalings couple the power transferred bad t
number of nodes in different ways.

There are two significant limitations in using the existing
scaling law results to identify fundamental operating megs
of ad hoc networks. First, the degrees of freedom available i
a network depend on the number of nodes in addition to the
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power transferred in the network with the number of nodes in
specific ways, the existing formulations may be missing out
on much of the interesting parameter space. Second, neither
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scenario where the channels between different node pairs ca
be in different SNR regimes. More concretely, let us intetjar
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channel to be in high SNR in a large network if the SNR goe®rrespond ta5 = 0, with an exponent equal to:
to infinity with n, and in low SNR if the SNR goes to zero with 2-a/2 2<a<3
n.r Then it can be readily verified that in dense networks, the e(a,0) = { 1/2 0>3
channels between all node pairs are in the high SNR regime,
while in extended networks, the channels between all nofkecond and third cases respectively). These special eases
pairs are in the low SNR regime. the main results of [9]. Observe that in the general case the

In this paper, we consider a generalization that allows gsaling exponent(a, 3) depends on the path loss exponent
to overcome these two limitations of the existing formulati « and the nearest neighbor SNR expongnseparately, so
Instead of considering a fixed area or a fixed density, we ke general result cannot be obtained by a simple re-scaling
the area of the network scale lik¢’ wherev can take on of distances in the dense or extended model.
any real value. Dense networks correspondvte= 0 and To interpret the general result (2) and to compare it to the
extended networks correspond to= 1. By analyzing the point-to-point scenario, let us re-express the result imse
problem for all possible values of we are now considering of system quantities. Recall that SN the SNR over the
all possible interplay between power and degrees of freedosmallest scale in the network, which is the typical nearest
Note that in networks where is strictly betweer0 and 1, neighbor distance. Thus,
channels between nodes that are far away will be at low P
SNR while nodes that are closer by will be at high SNR. SNR, = n” = I ;V’ )
Indeed, the distance between nearest neighbors is of tlee ord _ _ 0 _
of \/A/n = n=1/2 and, assuming a path loss exponerWherePr is the rec_e|ved power from a no_de at the typical
of a, the received SNR of the transmitted signal from th@earest neighbor distancg A/n and W Hz is the channel
nearest neighbor scales like*=*)/2 growing with n. On !oandW|dth. Let us algo define the SNR over the largest scale
the other hand, the received SNR of the transmitted sigriithe network, the diametey’4, to be
from the farthest nodes scales likgv/A)=® = n=/2 n—o/2p
going to zero withn. Note that scaling the area by’ is SNR i=n ———" =n!"*/>t0, (4)

. ' . . NoW

completely equivalent to scaling the nearest neighbor SNR
asn”, where 8 := a(1 — v)/2. Since SNR is a physically wheren—°/2P, is the received power from a node at distance
more relevant parameter in designing communication systerfliameter of the network. The result (2) can be used to give
we will formulate the problem as scaling directly the netrete following approximation to the total capacity, in bits/s:
neighbor SNR. z

The main result of this paper is as follows. Consi@er nW SNR > 0 dB
nodes randomly located in an argd such that the received n?=/2p. /Ny SNR <« 0dBand2<a <3
SNR for a transmission over the typical nearest neighborx { \/nP,/Ny SNR, <« 0 dB anda > 3
distance of\/A/n is SNR, := n”. The path loss exponent VW a=2 (P, /Ny)a> SNR < 0 dB, SNR, > 0 dB
is a > 2. Each transmission goes through an independent anda > 3.
uniform phase rotation. There are source and destination (5)

pairs, randomly chosen, each demanding the same rate. Nete two immediate observations in (5). First, there are two
C,(a, 5) denote the total capacity of the network, which iSNR parameters of interest in networks, the short and thg lon
the highest achievable sum rate, in bits/s/Hz and its sgalidistance SNR’s, as opposed to the point-to-point case where
exponent be defined as, there is a single SNR parameter. Second, the most natural
log Cin(, ) way to measure the long-distance SNR in networks is not the
e(a, B) := lim ———2—=. (1) SNR of a pair separated by a distance equal to the diameter
n=oo logm of the network, but it isn times this quantity as defined in
(4). Note that there are order nodes in total located at a
diameter distance to any given node in the network, hence
times the SNR between farthest nodes is the total SNR that can
be transferred to this node across this large scale. On tieg ot

The following theorem is the main result of this paper.
Theorem 1: The scaling exponent(«, 3) of the total ca-
pacity C,,(«, 3) is given by

1 B>a/2-1 hand a node has only a constant number of nearest neighbors,
2—a/2+0 B<a/2—1and2 <a <3 and hence the short-distance SNR in (3) is simply the SNR
e(a, f) = 1/2+4 3 B<0anda >3 between a nearest neighbor pair.
1/2+6/(a—2) 0<pB<a/2—1anda>3. The four regimes in (5) are shown in Figure 1. In Regime-
(2) 1, the performance is achieved by hierarchical cooperation

and long range MIMO transmission, the scheme introduced in
Note that dense networks correspondste= «/2, with an  [9]. At the highest level of hierarchy, clusters of size asho
exponente(a, a/2) = 1 (first case), and extended network®rder n communicate via MIMO, at distance the diameter
of the network. The quantity SNRcorresponds to the total

1We interpret a channel in both high and low SNR, if the SNR doets
depend om. °Note thatC = W Cp(a, B).
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Fig. 1. The four operating regimes. The optimal schemesdsdhegimes are

I-Hierarchical Cooperation, II-Bursty Hierarchical Cawption, IlI-Multihop, . ) ) ) . . .
IV- Multihop MIMO Hierarchical Cooperation. Fig. 2. The figure illustrates the optimal scheme in Regimewhich is

based on cooperating locally and multihopping globallyteNthat packets are
transmitted by multihopping on the network level and each f®realized
with distributed MIMO transmissions combined with hietsioal cooperation.

received SNR at a node during these MIMO transmissions.

Since this quantity is larger thandB, the long range MIMO

transmissions, and hence the performance of the netwaek, where the cluster size isand the number of hops ign, and

in the bandwidth limited regime, with performance roughl$he long-range cooperative scheme, where the cluster size i

linear in the bandwidthi¥’. The performance is linear in Of ordern and the number of hops is Note also that because

the number of nodes, implying that interference limitation short-range links are bandwidth-limited and long-rangédi

removed by cooperation, at least as far as scaling is coaderrire power-limited, the network capacity mth bandwidth

Performance in this regime is qualitatively the same asithatand power-limited. Thus the capacity is sensitive to both th

dense networks. amount of bandwidth and the amount of power available. This
In all the other regimes, the total long-range received SNIRgIMe is fundamentally a consequence of the heterogeneous

is less thard dB. Hence we are power-limited and the transfetature of links in a network and does not occur in point-to-

of power becomes important in determining performance. RPint links, nor in dense or extended networks.

Regime-Il, i.e., wheny < 3, signal power decays slowly with ~ The organization of the paper is as follows. In the following

distance, and the total power transfer is maximized by |0n§ecti0n we present our model in more detail. Section Il vaberi

range MIMO transmission. This performance can be achievédight upper bound on the scaling exponent in (1). Section IV

by bursty hierarchical cooperation with long-range MiMointroduces schemes that achieve the upper bound presented i
much like in extended networks. the previous section. The two sections together prove our ma

Whena > 3, signal power decays fast with distance, anfesult in Theorem 1. Section V contains our conclusions.
the transfer of power is maximized by short-range commu-
nications. If the nearest-neighbor SNR 0 dB (Regime- Il. MoDEL
), these transmissions are in the power-efficient regand There ar&n nodes uniformly and independently distributed
this power gain translates linearly into capacity, so ngtarein a rectangle of are@vA x v/A. Half of the nodes are
neighbor multihop is optimal. This is indeed the case isources and the other half are destinations. The sources and
extended networks, and hence nearest-neighbor multihopdéstinations are randomly paired up one-to-one without any
optimal for extended networks when> 3. consideration on node locations. Each source has the same
The most interesting case is the fourth regime, when 3 traffic rate R in bits/s/Hz to send to its destination node and a
and0 < 3 < a/2—1. This is the case when SNR> 0 dB, so common average transmit power budgetroWatts. The total
nearest-neighbor transmissions are bandwidth-limitetreot  throughput of the system 8 = nR.
power-efficient in translating the power gain into capag#yn. We assume that communication takes place over a flat
There is the potential of increasing throughput by spatialchannel of bandwidthi? Hz around a carrier frequency of
multiplexing transmission via cooperation within clustef f., f. > W. The complex baseband-equivalent channel gain
nodes and performing distributed MIMO. Yet, the clustersetween node and nodek at timem is given by:
cannot be as large as the size of the network since power - .
attenuates rapidlyg for > 3. P Higlm] = VG exp(j0ix [m]) ©6)
Indeed, it turns out that the optimal scheme in this regimevehere r;;, is the distance between the nodég,[m] is the
to cooperate hierarchically within clusters of an interiagézl random phase at timen, uniformly distributed in [0, 27]
size, perform MIMO transmission between adjacent clusteasd {0;x[m];1 < i < 2n,1 < k < 2n} is a collection
and then multihop across several clusters to get to the fimdlindependent identically distributed random proces3és
destination. (See Figure 2). The optimal cluster size isseho ,;[m]'s and ther;;’s are also assumed to be independent.
such that the received SNR in the MIMO transmission is dthe parameter& anda > 2 are assumed to be constants;
0 dB. Any smaller cluster size results in power inefficiencys called the power path loss exponent.
Any larger cluster size reduces the amount of power transferThe path-loss model is based on the standard far-field as-
because of the attenuation. Note that the two extremes spimption: we assume that the distamgeis much larger than
this architecture are precisely the traditional multihopeane, the carrier wavelength.. When the distances are comparable



or shorter than the carrier wavelength, the simple patb-los 5 D
model obviously does not hold anymore as path loss can
potentially become path “gain”. Moreover, the phadggm]
depend on the distance between the nodes modulo the carrier
wavelength and they can only be modeled as completely
random and independent of the actual positions of the nodes
if the nodes’ separation is large enough. Indeed, a recent
result [10] showed that, without making an a priori assuopti

of i.i.d. phases, the degrees of freedom are limited by the
diameter of the network (normalized by the carrier waveleng ,
A¢). This is agpatial limitation and holds regardless of how -
many communicating nodes there are in the network. This

result S_ljggeStS that as_long asthe numb_er of nodesmaller Fig. 3.  The cut-set considered in Section Ill. The commuitoarequests
than this normalized diameter, the spatial degrees of émedthat pass across the cut from left to right are depicted inl tinks.
limitation does not kick in, the degrees of freedom are still

limited by the number of nodes, and the i.i.d. phase model i

still reasonable. For example, in a network with diameter W"€r€ VG el bin
km and carrier frequency GHz, the number of nodes should H;, = a7z keS,ieD.
be of the order ofl0* or less for the i.i.d. phase model to Tik

be valid. While the present paper deals exclusively with tiiehe mappingl(-) is from the set of possible channel realiza-
standard i.i.d. random phase model, it would be interedtingtions H to the set of positive semi-definite transmit covariance
apply our new scaling law formulation to incorporate regimematrices. The diagonal eleme@X.(H) corresponds to the
where there is a spatial degrees of freedom limitation as wglower allocated to théth node for channel staté. Let us
Note that the channel is random, depending on the locatisimplify notation by introducing
of the users and the phases. The locations are assumed to be GP
fixed over the duration of the communication. The phases are SNR; := NoW (A/n)o/2 (8)
assumed to vary in a stationary ergodic manner (fast fadin 0
We assume that the phasgs[m]|} are known in a casual
manner at all the nodes in the network. The signal receivg
by nodei at timem is given by

a)hich can be interpreted as the average SNR between nearest
Sighbor nodes sincg/A/n is the typical nearest neighbor
Istance in the network. Let us also rescale the distances in
the network by this nearest neighbor distance, defining

Yilm] = 3 Higlm) Xfm] + Zilm] A | et
kz;éi Tik ‘= rix and Hy, = —eAa 5" (9)
VA/n Tik/

whereXj;[m] is the signal sent by nodeat timem andZ;[m] Note that the first transformation rescales space and maps ou
is white circularly symmetric Gaussian noise of varianég original network of are®2vA x /A to a network of area
per symbol. 2+/nx/n, referred to as an extended network in the literature.
Consequently, the matri¥/ defined in terms of the rescaled
I1l. CUTSET UPPERBOUND distances relates to such an extended network with 2Zmea

) o ) We can rewrite (7) in terms of these new variables as
We consider a cut dividing the network area into two equal

halves. We are interested in upper bounding the sum of théL—r <  max E (10gdet(1+ SNRy HQ(H)H*)) :

rates of communications;,_,z passing through the cut from E(Qkk%‘;}f{f vheS

left to right. These communications with source nodes kxdtat B (10)

on the left and destination nodes located on the right ha#f order to upper bound (10), we will use an approach similar

domain are depicted in bold lines in Fig. 3. Since the S-f the one developed in [9, Sec.V-B] for analyzing the capaci

pairs in the network are formed uniformly at randdf, .z scaling of extended networks. Note that although due the

is equal to1/4'th of the total throughputl’ w.h.p? The rescaling in (9),F in (10) governs an extended network, the

maximum achievablé/;, . in bits/s/Hz is bounded aboveproblem in (10) is not equivalent to the classical extended

by the capacity of the MIMO channel between all nodés setup since here we do not necessarily assume,SNR.

located to the left of the cut and all nodés located to the |ndeed, we want to keep full generality and avoid such arbi-

right. Under the fast fading assumption, we have trary assumptions on SNRn the current paper. Formally, we
are interested in characterizing the whole regime SNR:.®

1 where can be any real number.
Tr.r < omax E <1og det(I + N WHQ(H)H*)) One way to upper bound (10) is through upper bounding the
E(Qux (H))<P,VkeS 0 capacity by the total received SNR, formally using the retat
(7

log det(I + SNR, HQ(H)H*) < Tr (SNRS 1?1@(1?1)151*) .
3with high probability, i.e., with probability going t@ asn grows. (12)



The upper bound is tight only if the SNR received by each?) If SNR, < 1, then SNR < 1,Vi € D. Thus, let us
right-hand side node (each diagonal entry of the matrix choosew =1 or equivalentlyVp = 0.4

SNR; HQ(H)H*) is small. (Note that the relation in (11) 021

relies on t(he)inequalitlog(ler) < z which is only tight if z 3) If 1< SNR, < n/271, then let us choose
is small.) In the extended setup, where SNR1, the network . Vn if a=2
is highly power-limited and the received SNR is small, ttgat i = SNRSﬁ if a>2
decays to zero with increasing, for every right-hand side

node. Using (11) yields a tight upper bound in that case. SO thatwe ensure SNR® 1, Vi € Vp.

However, in the general case SNRan be arbitrarily large  \ye now would like to break the information transfer from
WhICh can result in high received SNR for certain right-hangle |eft-half domainS to the right-half domairD in (10) into
side nodes that are located close to the cut or even for gll, terms. The first term governs the information transfentr
nodes, depending on how large exactly SN& Hence, before g 4 v/, The second term governs the information transfer
using (11) we need to distinguish between those right-hagdy g to the remaining nodes on the right-half domain, i.e.,
side nodes that receive high SNR and those that have pegr v/, Recall that the characteristic of the nodés is that
power connections to the left-hand side. _they have good power connections to the left-hand sidejghat
For the sake of simplicity in presentation, we assume in thige information transfer frons to V5, is not limited in terms
section that there is a rectangular region located immelgtiat ot hower but can be limited in degrees of freedom. Thus, it is
to the right of the cut that is cleared of nodes. Formally, W asonaple to bound the rate of this first information transf
assume that the set of nodés= {i € D : 0 < 2; < 1} by the cardinality of the selp rather than the total received
is empty, wheret; denotes the horizontal coordinate of th%NR. On the other hand, the remaining no@&d/;, have poor
rescaled position’; = (i, ;) of nodei. In fact, w.h.p this ,,er connections to the left-half domain and the inforomati
property does not hold in a random realization of the nemorﬁansfer to these nodes is limited in power, hence using (11)

However, making this gssum.ptior_w allows us to exhibit the tight. Formally, we proceed by applying the generalized
central ideas of the discussion in a simpler manner. TRh& yamard’s inequality which yields

extension of the analysis to the general case (without this T
particular assumption) is given in Appendix I. logdet(I + SNR.HQ(H)H™)

Let Vp denote the set of nodes located on a rectangular < logdet(I + SNRH,Q(H)H})
strip immediately to the right of the empty regi@h Formally, B - NN
Vp={ieD:1<i <o} wherel <& < /n andw — 1 +logdet(I + SNR.H>Q(H) H;)
is the rescaled width of the rectangular stlip. See Fig. 3. where /1, and I, are obtained by partitioning the original
We would like to tunew so thatVp contains the right-hand matrix A: A, is the rectangular matrix with entrigd;;., k €
side nodes with high received SNR; i.e., those with receivel; ¢ Vv, and H, is the rectangular matrix with entries

SNR larger than a threshold, sayNote however that we do fj,, % c S,i e D\ Vp. In turn, (10) is bounded above by
not yet know the covariance matrig of the transmissions

from the left-hand side nodes, which is to be determined from Tr g < max E (1og det (I + SNRsﬁ1Q(ﬁ1)ﬁf))
the maximization problem in (10). Thus, we cannot compute Q(H1)20

. . . E(Qrk(H1))<1,VkES
the received SNR of a right-hand side node. For the purpose ) o
of determiningV’p however, let us arbitrarily look at the case + max E (log det(! + SNRSHQQ(HQ)H;)) (15)
whenq is the identity matrix and define the received SNR of Q(H2)20

; . . E(Qrr(Hz2))<1,VkeS
a right-hand side nodé € D when left-hand side nodes are , ] L
transmittingindependent signals at full power to be The first term in (15) can be bounded by considering the sum

P of the capacities of the individual MISO channels between
- 12— T2 — 7 nodes inS and each node iWp,
SNR i= o > [Hil> = SNR, Y |Hi|* = SNRy d;.

kes kes (12) Qg}ra));o E (log det(] + SNRsﬁlQ(ﬁl)ﬁf))
where we have defined E(Qkk(ﬁl)l)gl,vkes
di =Y | Hil* (13) < D log(1+nSNR Y [Hil?)
kes i€Vp =
Later, we will see that this arbitrary choice of identity aov < (i — 1) v/nlogn log(1 + n'+*(1/2+9) SNR,) (16)
ance matrix is indeed a reasonable one. A good approximation

w.h.p. for anyd > 0, where we use the fact that for any
covariance matrixQ of the transmissions from the left-hand
side, the SNR received by each node Vp is smaller than
where #; denotes the rescaled horizontal coordinate of no@eSNR,d; and d; < n*(1/2+9) since the rescaled minimal

i. (See [9, Lemma 5.4].) Using (12) and (14), we can identifseparation between any two nodes in the network is larger
three different regimes and specify accordingly:

for d; is

d; =~ 327 (14)

%

. “Note that this is when we use the earlier assumption of anyestfp F
2—1
1) If SNR, > n/>!, then SNR > 1, Vi € D. Thus, let of width 1. Without the assumption, we would need to chodse: 1 in this

us choosev = /n or equivalentlyVp = D. part.



thanﬁ w.h.p. for anys > 0. The number of nodes i,  where we identify four different operating regimes depegdi
is upper bounded by — 1) y/nlogn w.h.p. on «a andg.

The second term in (15) is the capacity of the MIMO Note that in the first regime the upper bound (16) is active
channel between nodes iff and nodes inD \ Vp. Using with @ = /n (or equivalentlyVp = D) while (17) is zero.

(11), we get The capacity of the network is limited by the degrees of
. . freedom in ann x n MIMO transmission between the left
oraax E (logdet(I+SNRsH2Q(H2)H§)) and the right hand side nodes. In the second regime, (17),
]E(Qkk(flzf)gl,VkGS with the corresponding upper bound being the second line in
. NN (19), yields a larger contribution than (16). The capacfty i
< Q%?;‘NE (Tr (SNRsH?Q(H?)H2)) limited by the total received SNR in a MIMO transmission
E(Qur (H2))<1,VkeS between the left-hand side nodes abd, V. Note that this
< n° SNRy; (17) _total received SNR Is e_qual (in order) to the power transfirr
in a MIMO transmission between two groups of nodes
for any e > 0 w.h.p, where separated by a distance of the order of the diameter of the

. network, i.e.,n? x (v/n)~® x SNR,.
SNRyoy = Z SNR; = SNR, Z di. (18) In the third regime, (17) is active witih = 1 (or equiva-
i€D\Vp i€D\Vp lently V, = () while (16) is zero. The corresponding upper
Inequality (17) is proved in [9, Lemma 5.2] and is preciselpound is the fourth line in (19). Note that this is where we
showing that an identity covariance matrix is good enough fohake use of the assumption that there are no nodes located
maximizing the power transfer from the left-hand side. Recat rescaled distance smaller thanto the cut. Due to this
that SNR in (18) has already been defined in (12) to be th@ssumption, the choicé = 1 vanishes the upper bound (16)
received SNR of nodeunderindependent signalling from the and simultaneously yield&; SNR;/n(log n)? in the last line
left-hand side. Note that (18) is equal to zero whHeh Vp = in (19). If there were nodes closer than rescaled distance
() or equivalently wheni = /n. If D\ Vp # 0, the last to the cut, we would need to choose < 1 to vanish the
summation in (18) can be approximated with an integral sineentribution from (16) which would yield a larger value for
nodes are uniformly distributed on the network area. Usithe termK;SNR,w?~*/n(logn)?. The capacity in the third
also (14), it is easy to derive the following approximation f regime is still limited by the total SNR received by nodes in

the summation D\ Vp (= D now) but in this case the total is dominated by
NN the SNR transferred between the nearest nodes to the cut, i.e
Z d; ~ / / #2=9dz dg. \/n pairs separated by the nearest neighbor distance, yielding
ieD\Vp o Jw Vi x SNR;.

The most interesting regime is the fourth one. Both (16) and
Here we state a precise result that can be found by strai%iwt ! g regime | u (16)

forward modifications of the analysis in [9]. 1§ # /n, we 7) with the choiced = SNR™* yigld the same contribution.
have Note that (16) upper bounds the information transfei/in

the set of nodes that have bandwidth-limited connections to

K1 SNR, 1 (log n)? a=2 the left-hand side. This information transfer is limited in
K1 SNR, n?>~%/2(log n)? 2<a<3 degrees of freedom. On the other hand, (17) upper bounds
SNReor < K1 SNR, /i (logn)? a=3 the information transfer taD \ Vp, the set of nodes that
K1 SNR, 0= /7 (log n)? @ > 3. have power-limited connections to the left-hand side. This
19) second information transfer is power-limited. Eventuatly
where K > 0 is a constant independent 8tV R, andn. this regime, the network capacity is both limited in degrefs

Combining the upper bounds (16) and (17) together with offf€dom and power, since increasing the bandwidth incsease
choices fori specified earlier, one can get an upper bourt€ first term (16) and increasing the power increases the
on T, _.x in terms of SNR andn. Here, we state the final S€cond term (17).
result in terms of scaling exponents: Let us define

log SNR, IV. ORDEROPTIMAL COMMUNICATION SCHEMES
= lim logn In this section, we search for communication schemes
whose performance meets the upper bound derived in the
and ; . o
log T . logTrr previous section. The derivation of the upper bound already
e(a, f) = lim = = lim —==-—.  (20) provides hints on what these schemes can be: In the first two
regimes, the capacity of the network is limited by the degree
We have, of freedom and received SNR respectively, in a network wide
1 B>a/2—-1 MIMO transmission. The recently proposed hierarchicalpzoo
2—a/2+0 f<a/2-1and2<a<3 eration scheme in [9] is based on such MIMO transmissions
e(a, f) < 1/24 3 B<0anda >3 so it is a natural candidate for optimality in these regimes.

1/2+6/(a—2) 0<B<a/2—1anda >3 In the third regime, the information transfer between the
(21) two halves of the network is limited by the power transferred



between the closest nodes to the cut. This observation stegge (20)) is given by
the following idea: if the objective is to transfer inforrat 1/2 B3>0
from the left-half network to the right-half, then it is ergiu Emultihop(Ct; B) = { 1248 B<0
to employ only those pairs that are located closest to the -
cut and separated by the nearest neighbor distance. (fifecan be expected, multihop only achieves the upper bound
rest of the nodes in the network can undertake simultaneddg21) in the third regime whep < 0 anda > 3. In other
transmissions suggesting the idea of spatial reuse.) laroti/ords, when even the nearest neighbor transmissions in the
words, the upper bound derivation suggests that efficianstr network are power limited and signals attenuate suffigentl
missions in this regime are the point-to-point transmissio fast so that pairs located farther apart than the nearesgt ber
between nearest neighbors. Indeed, this is how the wellvknodistance cannot contribute to the power transfer effelgtive
multihop scheme transfers power across the network so theé optimal strategy is to confine to nearest neighbor trans-
multihop scheme arises as a natural candidate for optinalffissions.

(22)

in the third regime. ~ The second scheme for wireless networks in [9] is based
In the derivation of the upper bound for the fourth regimeyn a hierarchical cooperation architecture that perforiss d

we have seen that the two terms (16) and (17), governing thguted MIMO transmissions between clusters of nodes. The

information transfer td/p and D\ Vp respectively, yield the oyerhead introduced by the cooperation scheme is small so

same contribution with the particular choige = SNR 2. that the throughput achieved by the distributed MIMO trans-

Since the contributions of the two terms are equal (amdissions is not that different (at least in scaling sengapfthe

since we are interested in order here) the derivation of th@oughput of a classical MIMO system where transmit and

upper bound suggests the following idea: information caeceive antennas are collocated and can cooperate for free.

be transferred optimally from the left-half network to thdndeed, the aggregate throughput achieved by the scheme is

right-half by performing MIMO transmission only betweeralmost equal to the rate of a MIMO transmission between

those nodes on both sides of the cut that are located two clusters of the size of the network and separated by

to 1 — SNRSﬁ rescaled distance to the cut. Note that distance equal to the diameter of the netwefK. More

(16) corresponds to the degrees of freedom in such a MIMBECisely,

transmission. As in the case of multihop, we can have spatial e GP

reuse and allow the rest of the nodes in the network to perform Tre 2 Kzn'~* log (1 + ”W) (23)

simultaneous transmissions. Thus, the derivation of theeup 0

bound suggests that efficient transmissions in the fouginre for any e > 0 and a constanf(s > 0 w.h.p, wheren™

are MIMO transmissions at the scai SNRSﬁ Combined is the loss in performance due to cooperation overhead. The
. B GP . .

with the idea of spatial reuse this understanding suggests Nty 7577~ is the total power received by a node

transfer information in the network by performing Mimoin the receive cluster, when nodes in the transmit cluster ar

o . N 1 signalling independently at full power. Expressifig;c in

a—2

transmissions _at thg particular (local) scaleuo% SNRS terms of SNR in (8), we have

and then multihopping at the global scale. This new scheme

is introduced in Section IV-B. Tre > K3n'~¢ log (1 +pla/? SNRS) .

€

Thus, the scaling exponent of hierarchical cooperationvisrg
A. Known Schemes in the Literature by

There are two fundamentally different communication ! B>a/2-1
schemes suggested for wireless networks in the literaline: enc(e. f) = 2—a/24+ 5 [f<aj2-1.
multihop scheme and the hierarchical cooperation scherc}%.

. . . . e performance in the second line is achieved by using a
The multihop scheme is based on multihopping packets yia . . : .

) . . Ursty version of the hierarchical cooperation scheme,revhe
nearest neighbor transmissions. Its aggregate throughkpu

well known 1o be hodes ope_rate the ongmgl sc_hem_e only a fracgll@;L,—1 of
the total time and stay inactive in the rest to save power.
SNR; ) See [9, Sec. V-A]. We see that hierarchical cooperation sneet

(24)

1+ K3SNR, the upper bound in (21) in the first regime whém> /2 — 1,

i.e., when power is not a limitation. When power is limited
w.h.p wherelog(1 + 3, air-) S the throughput achieved inpyt 2 < < 3, bursty hierarchical cooperation can be used
the nearest neighbor transmission§; SNR is the interfer- o achieve the optimal power transfer. We see that neither

ence from simultaneous transmissions in the network toenoigyitihop nor hierarchical cooperation is able to meet theeup
ratio whereK, > 0 is a constant independentofand SNR.  pound in the fourth regime.

The factor,/n is the number of nearest neighbor transmissions

that can be parallelized over a given cut. The scaling exrpioan A New Hybrid Scheme: Cooperate Locally, Multihop Glob-
Emultihop (@, 3) Of the multihop scheme (defined analogousl(yil'Iy Y ' Y.

Tmultihop = \/ﬁ lOg (1 +

5In a different context, a similar scheme has been suggestehtly in an ) Let us divide our network Oinfocles andgarlem X \/Z
independent work [11]. into square cells of ared. = 24 SNRV/(*/271)_ Note that



A. < A, hence this is a valid choice, if < a/2 — 1. If also cells.) As we have already discussed in (23), using hiereath
3 > 0, each cell contains of the order 8f = SNR!/(“/2~1 cooperation one can achieve an aggregate rate

nodes w.h.p. We transmit the traffic between the source- GP

destination pairs in the network by multihopping from onté ce M Ryeiay > Ks M' ™€ log (1 + MW)

to the next. More precisely let the S-D line associated to-an S oW (V)

D pair be the line connecting its source node to its destinati =KsM'" log (1 + Ml"‘/QSNRs)

node. Let the packets of this S-D pair be relayed along adjac;or these M source destination pairs. The second equation

cells on its S-D line just like in standard multihop. See Fig . S
. ) =~ s obtained by substitutingd. = MA/n and SNR =
The total traffic through each cell is that due to all S-D lineS ~gp Note that ifA/1—*/2SNR. > 1, then

passing through the cell, which @(v/nM). Let us randomly NoW (A/n)*/2"
associate each of theé¥+v/nM) S-D lines passing through a Rrelay > KaM™¢ > Kyn™“. (26)
cell with one of theM nodes in the cell, so that each node is

. . . — /(a/2=1)
associated wittO(,/n/M) S-D lines. The only rule that we | Other words, M = SNR, is the largest cell

need to respect while doing this association is that if an S¥y€ one can choose while still maintaining almost constant
line starts or ends in a certain cell, then the node ass:nlcia{

@msmission rate for each of thd S-D pairs.
to the S-D line in this cell should naturally be its respeetiv Now let us turn back to our original problem concerning the
source or destination node. The nodes associated to an

§g%dy-state operation of the multihop scheme. At each hop,
line are those that will decode, temporarily store and fmdNaeaCh of thel nodes in a cell needs to relay its packets to one
the packets of this S-D pair during the multihop operatior},

f the four (left, right, up and down) adjacent cells. Sinlse t
The following lemma states a key result regarding the rate fD lines are randomly assigned to the nodes in the cellether
transmission between neighboring cells.

are M /4 nodes on the average that want to transmit in each
Lemma 1. There exists a strategy (based on hierarchicg

irection. These transmissions can be realized succéssive
cooperation) that allows each node in the network to reky ifSing hierarchical cooperation and the relaying rate in) (26
packets to their respective destination nodes in the adjac

an be achieved in each transmission. On the other hand the
DMA between the four transmissions will reduce the overall
cells at a rate . .
relaying rate by a factor of. Indeed, one should also consider
a TDMA scheme between the cells allowing only those cells
for anye > 0 and a constank, > 0. that are sufﬂmently separat_ed in space f[o operate simailtan
: ously so that the inter-cell-interference in the networleslo
_ In sFeady-state operation, the outbound rate of a relay no degrade the quality of the transmissions significaithe
glvDerI]_ n thtf] I?rtr;]ma slhogld be Shar.i(lj t;etWﬁen@I(n;t;L/M)t inter-cell-interference and TDMA will further reduce thate
S_D Ines tha ebre ay Is responsible for. Hence, the rate g, (26) by a constant factor however will not affect the sogli
- pairis given by law. Such insights on scheduling and interference are atand
R> K/ Mn~ /2 (25) by-now and are not central to our analysis on scal_mg laws. We
refer the reader to [9, Lemma 4.2] for more details. [

or equivalently, the aggregate rate achieved by the scheme iNote that the new scheme illustrated in Fig. 2 is a com-
e bination of multihop and hierarchical cooperation. Pasket
Tuttinop+ro > Kan'/?~ SNRE . are transferred by multihopping on the network level and
each hop is realized via distributed MIMO transmissionst Ou
analysis shows that multihopping and distributed MIMO are
. : two fundamental strategies for wireless networks. However
emuttinopt (@ f) =1/2+B/(a=2) 0 <f<af2-1 optimality can only be achieved if these two strategies are
which matches the upper bound (21) in the third regime. €ombined together appropriately; the optimal combination
depends on the SNR level in the network. When> 3,
Note that considering (25), it is beneficial to chodgeas we identify three different regimes in wireless networkse t
large as possible since it reduces the relaying burden. tAawe high, low and hybrid SNR regimes. The high SNR regime
Lemma 1 does not hold for any arbitraky. The proof of the (3 > a/2—1)is the extremal case when even the long-distance
lemma reveals a key property regarding our initial choiae fG&NR in the network is large (SNR> 0 dB). Distributed
M (or A,). MIMO with hierarchical cooperation achieves capacity irsth
Proof of Lemma 1: Let us concentrate only on two neighborcase. In the hybrid SNR regimé (< § < «/2 — 1), the
ing cells in the network. (Consider for example the two cellong-distance SNR in the network is low (SNR 0 dB),
highlighted in Fig. 2): The two neighboring cells togethemh and packets need to be transmitted by multihopping at this
a network of2M nodes randomly and uniformly distributedscale; while close by pairs are still in the high SNR regime
on a rectangular areza/A, x /A,. Let the M nodes in one (SNR, > 0 dB) and distributed MIMO provides the optimal
of the cells be sources and thd nodes in the other cell information transfer at this smaller scale. The low SNR megi
be destinations and let these source and destination no¢les< 0) is the other extreme when even the short distance SNR
be paired up randomly to formd/ S-D pairs. (This traffic is low (SNR, < 0 dB). The multihop MIMO scheme reduces
will later be used to model the hop between two adjacetdt pure multihop in this last case.

Rrelay > K4 n-°

In terms of the scaling exponent, we have



V. CONCLUSION L
Suppose you are asked to design a communication scheme S ] D
for a particular network with given size, area, power budget e
path loss exponent, etc. What would be the efficient strategy IHEEE!
to operate this wireless network? In this paper, we answer HE E
this question by co_nnecting engineering qua_ntities thathm .==H!§
directly measured in the network to the design of good com- =.l=!i
munication schemes. In a given wireless network, we idgntif EEEDEE
two SNR parameters of importance, the short-distance and . H!Ei
the long-distance SNR’s. The short-distance SNR is the SNR HE
y

between nearest neighbor pairs. The long-distance SNReis th
SNR between farthest nodes times the size of the network.
If the long-distance SNR is high, then the network is in thEg. 4. The cutin Lemma 2 that is free of nodes on both sides wfistance
bandwidth limited regime. Long-distance communication {g?2 s ilustrated in the figure.

feasible and good communication schemes should explait thi

feasibility. If the long-dist SNR is low, then th thy . .
casioity © long-cistance ' ‘ow, fhen the netwo gcut using methods from percolation theory. See [13] for a

is power-limited and good communication schemes need ) . L ;
maximize the power transfer across the network. When tHEre general discussion of applications of percolatiomtpe
p wireless networks.

ower path loss exponent is small so that signals deca Iov& L
b b P J ¥ Lemma 2: For any realization of the random network and a

this power transfer is maximized by global cooperation. Whe ;
the power path loss exponent is large and signals decay fg&r)stant) < ¢ <1/7,/e independent of and 4, w.h.p. there

the power transfer is maximized by cooperating in small _lests a ve_rtical cut of the netv_vork area that is not n.ec'éyssar

scales. The cooperation scale is dictated by the power p ar but is located in the middle pf the network in a _slab

loss exponent and the short-distance SNR in the network. "t Wider thanL = cy/A/nlogn and is such that there exists
The current results in the literature, in particular [9] ttha'© nodes at distance smaller thag/A/n to the cut on both

provides the complete picture for the dense and the extend®i{fS- See Fig. 4. . _

scaling regimes, fail to answer this engineering question | N€ assumption of an empty regignin Section Ill, allowed

because they only address two specific cases that couple $§&C Plug ind = 1 in the fourth line of (19) and conclude that

degrees of freedom and power in the network in two Vewhen the left-hand side nodésare transmitting independent

particular ways. The picture is much richer than what can 3@nais, the total SNR received by all nodesio the right of

delineated by these two settings. In that sense, the currHift linéar cut is bounded above by

paper suggests the abandonment of the existing formulatiog _ SNR

of wireless networks in terms of dense and extended scaling Reot Z R

regimes, a formulation that has been dominant in the libeeat ep 3

ovger the last decade. A better delineation is obtained by K SNRSRQ(IOg:) ) a=2

treating the power and degrees of freedom available in the < ] KiSNRn ~*2(logn)? 2<a<3 27)
network as two independent parameters and studying the ~ | K;SNR;/n (logn)? a=3

interplay between them. K1 SNR, v/ (logn)? >3,

where SNR is defined in (12).

APPENDIXI The same result can be proven for the cut given in Lemma 2
REMOVING THE ASSUMPTION OF ANEMPTY STRIP IN . . p_ . 9
SecTion Il without requiring any special assumption. LBtdenote the

set of nodes located to the right of the cut but inside the

While proving the upper bound on network capacity ifiectangular slab mentioned in the lemma. See Figure 4. Then
Section Ill, we have considered a vertical cut of the network

that divides the network area into two equal halves and SNRot = » SNR + > SNR. (28)
assumed that there is an empty rectangular region to thé righ icB i€D\B

pf this cut, of width eq_ual to the negrest neighbor dis.tan%%r any node € B,
in the network (or of width equal ta in the corresponding is

rescaled network). With high probability, this assumptilmres VIT VT

not hold in a random realization of the network. Indeed for an SNR; < SNRS/ / qfdfd&

linear cut of the random network, w.h.p. there will be nodes o 0 c T

both sides of the cut that are located at a distance muchesmadince Lemma 2 guarantees that there are no left-hand side
than the nearest neighbor distance to the cut. In order teepraodes located at rescaled distance smaller thém a right-

the result in Section Il rigorously for random networks, wéand side node. Moreover, nodes are uniformly distributed
need to consider a cut that is not necessarily linear bugfigti on the network area so the summation in (12) over the left-
the property of having no nodes located closer than the seateand side node$ can be approximated by an integral. A
neighbor distance to it. Below, we show the existence of suphecise upper bound on SNRan be found using the binning

an approximate upper bound for SNR
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neighboring cells that are open, a neighboring cell beirgafn

the four cells located immediately to the top, bottom, leftla
right of a cell. See Fig. 4. On the other hand, we define a closed
path in a slightly different manner: A closed path is compbse
of neighboring cells that are closed but a neighboring catl ¢
now be one of the& cells located immediately at the top, top-
left, left, bottom-left, bottom, bottom-right, right, teqight of

a cell. See Fig. 5. With these definitions of closed and open
paths, we have

P[the slab contains an open top-bottom crossing
1 — P[the slab contains a closed left-right crossing

Fig. 5. A closed left-right crossing.

where a closed left-right crossing refers to a closed path th
connects the left-boundary’ of the slab to its right boundary
Z. Let P(i «— Z) denote the probability that there exists a
h closed path starting from a particular céle . and ending
the right-boundary. Note that such a path should be at leas
of lengthlogn cells. Denoting byN; the number of closed
paths of lengtHogn that start from the cell, we have

argument in [9, Lemma 5.2] which yields
SNR; < K7 SNR; logn.

Since there are less thapnlogn nodes in B with hig
probability, the first summation in (28) can be upperbound
by

> “SNR; < K1 SNR, v/n (logn)*.

i€B P(i — %) <P(N; > 1).
Note that this contribution is smaller than any of the terms
(27). The second summati@ieD\B SNR; in (28) is equal or
smaller in order to (27) since when the nodesre removed
there is a empty region of width at leasbetween the nodes
S and remaining node® \ B. Hence for the second term
in (28), we are back in the situation discussed in Sectign IWheres;(logn) denotes the number of distinct, loop-free paths
hence the upperbound (27) applies. of lengthlogn starting fromi. This number is obviously not

Proof of Lemma 2: Let us divide our network of ared/Ax  larger thano;(logn) < 5 x 7(°e»=1_ Combining the three

V/A into square cells of side length /A/n where0 < ¢ < 1  inequalities, we have
is a constant independent df andn. We say that a cell is
closed if it contains at least one node and open if it contains

IBy (29), a given path of lengttvg n is closed with probability
less thanc21°e™, By the union bound, we have

P(N; >1) < chOg"cri(logn),

P[the slab contains a closed left-right crossing

no nodes. Since th&n nodes are uniformly and independently vn/e . 5 -
distributed on the network ar@a, the probability that a given < Z P(i & %) < %\/5(76 )R
cell is closed is upper bounded by the union bound by =1

Choosingc? < % the last probability decreases @oas n

P[a cell is closefl< 2. _ _
increases. This concludes the proof of the lemma. [.

Similarly, the probability that a given set ofn cells
{c1,...,cm} are simultaneously closed is upper bounded by
P[{c1,...,cm} is closed
= PJc; is closed x P[cy is closede; is closed x . ..
§02><62~-~><c2 (29)
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