221 research outputs found

    Cooperative Precoding with Limited Feedback for MIMO Interference Channels

    Full text link
    Multi-antenna precoding effectively mitigates the interference in wireless networks. However, the resultant performance gains can be significantly compromised in practice if the precoder design fails to account for the inaccuracy in the channel state information (CSI) feedback. This paper addresses this issue by considering finite-rate CSI feedback from receivers to their interfering transmitters in the two-user multiple-input-multiple-output (MIMO) interference channel, called cooperative feedback, and proposing a systematic method for designing transceivers comprising linear precoders and equalizers. Specifically, each precoder/equalizer is decomposed into inner and outer components for nulling the cross-link interference and achieving array gain, respectively. The inner precoders/equalizers are further optimized to suppress the residual interference resulting from finite-rate cooperative feedback. Further- more, the residual interference is regulated by additional scalar cooperative feedback signals that are designed to control transmission power using different criteria including fixed interference margin and maximum sum throughput. Finally, the required number of cooperative precoder feedback bits is derived for limiting the throughput loss due to precoder quantization.Comment: 23 pages; 5 figures; this work was presented in part at Asilomar 2011 and will appear in IEEE Trans. on Wireless Com

    Very Low-Rate Variable-Length Channel Quantization for Minimum Outage Probability

    Full text link
    We identify a practical vector quantizer design problem where any fixed-length quantizer (FLQ) yields non-zero distortion at any finite rate, while there is a variable-length quantizer (VLQ) that can achieve zero distortion with arbitrarily low rate. The problem arises in a t×1t \times 1 multiple-antenna fading channel where we would like to minimize the channel outage probability by employing beamforming via quantized channel state information at the transmitter (CSIT). It is well-known that in such a scenario, finite-rate FLQs cannot achieve the full-CSIT (zero distortion) outage performance. We construct VLQs that can achieve the full-CSIT performance with finite rate. In particular, with PP denoting the power constraint of the transmitter, we show that the necessary and sufficient VLQ rate that guarantees the full-CSIT performance is Θ(1/P)\Theta(1/P). We also discuss several extensions (e.g. to precoding) of this result

    Bit Allocation Law for Multi-Antenna Channel Feedback Quantization: Single-User Case

    Full text link
    This paper studies the design and optimization of a limited feedback single-user system with multiple-antenna transmitter and single-antenna receiver. The design problem is cast in form of the minimizing the average transmission power at the base station subject to the user's outage probability constraint. The optimization is over the user's channel quantization codebook and the transmission power control function at the base station. Our approach is based on fixing the outage scenarios in advance and transforming the design problem into a robust system design problem. We start by showing that uniformly quantizing the channel magnitude in dB scale is asymptotically optimal, regardless of the magnitude distribution function. We derive the optimal uniform (in dB) channel magnitude codebook and combine it with a spatially uniform channel direction codebook to arrive at a product channel quantization codebook. We then optimize such a product structure in the asymptotic regime of BB\rightarrow \infty, where BB is the total number of quantization feedback bits. The paper shows that for channels in the real space, the asymptotically optimal number of direction quantization bits should be (M1)/2{(M{-}1)}/{2} times the number of magnitude quantization bits, where MM is the number of base station antennas. We also show that the performance of the designed system approaches the performance of the perfect channel state information system as 22BM+12^{-\frac{2B}{M+1}}. For complex channels, the number of magnitude and direction quantization bits are related by a factor of (M1)(M{-}1) and the system performance scales as 2BM2^{-\frac{B}{M}} as BB\rightarrow\infty.Comment: Submitted to IEEE Transactions on Signal Processing, March 201
    corecore