2,376 research outputs found

    On bounding the difference between the maximum degree and the chromatic number by a constant

    Full text link
    We provide a finite forbidden induced subgraph characterization for the graph class ΄k\varUpsilon_k, for all k∈N0k \in \mathbb{N}_0, which is defined as follows. A graph is in ΄k\varUpsilon_k if for any induced subgraph, Δ≀χ−1+k\Delta \leq \chi -1 + k holds, where Δ\Delta is the maximum degree and χ\chi is the chromatic number of the subgraph. We compare these results with those given in [O. Schaudt, V. Weil, On bounding the difference between the maximum degree and the clique number, Graphs and Combinatorics 31(5), 1689-1702 (2015). DOI: 10.1007/s00373-014-1468-3], where we studied the graph class Ωk\varOmega_k, for k∈N0k \in \mathbb{N}_0, whose graphs are such that for any induced subgraph, Δ≀ω−1+k\Delta \leq \omega -1 + k holds, where ω\omega denotes the clique number of a graph. In particular, we give a characterization in terms of Ωk\varOmega_k and ΄k\varUpsilon_k of those graphs where the neighborhood of every vertex is perfect.Comment: 10 pages, 4 figure

    Upward Three-Dimensional Grid Drawings of Graphs

    Full text link
    A \emph{three-dimensional grid drawing} of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight line segments representing the edges do not cross. Our aim is to produce three-dimensional grid drawings with small bounding box volume. We prove that every nn-vertex graph with bounded degeneracy has a three-dimensional grid drawing with O(n3/2)O(n^{3/2}) volume. This is the broadest class of graphs admiting such drawings. A three-dimensional grid drawing of a directed graph is \emph{upward} if every arc points up in the z-direction. We prove that every directed acyclic graph has an upward three-dimensional grid drawing with (n3)(n^3) volume, which is tight for the complete dag. The previous best upper bound was O(n4)O(n^4). Our main result is that every cc-colourable directed acyclic graph (cc constant) has an upward three-dimensional grid drawing with O(n2)O(n^2) volume. This result matches the bound in the undirected case, and improves the best known bound from O(n3)O(n^3) for many classes of directed acyclic graphs, including planar, series parallel, and outerplanar

    Graphs with tiny vector chromatic numbers and huge chromatic numbers

    Get PDF
    Karger, Motwani, and Sudan [J. ACM, 45 (1998), pp. 246-265] introduced the notion of a vector coloring of a graph. In particular, they showed that every k-colorable graph is also vector k-colorable, and that for constant k, graphs that are vector k-colorable can be colored by roughly Δ^(1 - 2/k) colors. Here Δ is the maximum degree in the graph and is assumed to be of the order of n^5 for some 0 < ή < 1. Their results play a major role in the best approximation algorithms used for coloring and for maximum independent sets. We show that for every positive integer k there are graphs that are vector k-colorable but do not have independent sets significantly larger than n/Δ^(1- 2/k) (and hence cannot be colored with significantly fewer than Δ^(1-2/k) colors). For k = O(log n/log log n) we show vector k-colorable graphs that do not have independent sets of size (log n)^c, for some constant c. This shows that the vector chromatic number does not approximate the chromatic number within factors better than n/polylogn. As part of our proof, we analyze "property testing" algorithms that distinguish between graphs that have an independent set of size n/k, and graphs that are "far" from having such an independent set. Our bounds on the sample size improve previous bounds of Goldreich, Goldwasser, and Ron [J. ACM, 45 (1998), pp. 653-750] for this problem

    Complexity of Grundy coloring and its variants

    Full text link
    The Grundy number of a graph is the maximum number of colors used by the greedy coloring algorithm over all vertex orderings. In this paper, we study the computational complexity of GRUNDY COLORING, the problem of determining whether a given graph has Grundy number at least kk. We also study the variants WEAK GRUNDY COLORING (where the coloring is not necessarily proper) and CONNECTED GRUNDY COLORING (where at each step of the greedy coloring algorithm, the subgraph induced by the colored vertices must be connected). We show that GRUNDY COLORING can be solved in time O∗(2.443n)O^*(2.443^n) and WEAK GRUNDY COLORING in time O∗(2.716n)O^*(2.716^n) on graphs of order nn. While GRUNDY COLORING and WEAK GRUNDY COLORING are known to be solvable in time O∗(2O(wk))O^*(2^{O(wk)}) for graphs of treewidth ww (where kk is the number of colors), we prove that under the Exponential Time Hypothesis (ETH), they cannot be solved in time O∗(2o(wlog⁡w))O^*(2^{o(w\log w)}). We also describe an O∗(22O(k))O^*(2^{2^{O(k)}}) algorithm for WEAK GRUNDY COLORING, which is therefore \fpt for the parameter kk. Moreover, under the ETH, we prove that such a running time is essentially optimal (this lower bound also holds for GRUNDY COLORING). Although we do not know whether GRUNDY COLORING is in \fpt, we show that this is the case for graphs belonging to a number of standard graph classes including chordal graphs, claw-free graphs, and graphs excluding a fixed minor. We also describe a quasi-polynomial time algorithm for GRUNDY COLORING and WEAK GRUNDY COLORING on apex-minor graphs. In stark contrast with the two other problems, we show that CONNECTED GRUNDY COLORING is \np-complete already for k=7k=7 colors.Comment: 24 pages, 7 figures. This version contains some new results and improvements. A short paper based on version v2 appeared in COCOON'1

    Anagram-free Graph Colouring

    Full text link
    An anagram is a word of the form WPWP where WW is a non-empty word and PP is a permutation of WW. We study anagram-free graph colouring and give bounds on the chromatic number. Alon et al. (2002) asked whether anagram-free chromatic number is bounded by a function of the maximum degree. We answer this question in the negative by constructing graphs with maximum degree 3 and unbounded anagram-free chromatic number. We also prove upper and lower bounds on the anagram-free chromatic number of trees in terms of their radius and pathwidth. Finally, we explore extensions to edge colouring and kk-anagram-free colouring.Comment: Version 2: Changed 'abelian square' to 'anagram' for consistency with 'Anagram-free colourings of graphs' by Kam\v{c}ev, {\L}uczak, and Sudakov. Minor changes based on referee feedbac
    • 

    corecore