4,485 research outputs found

    Tangle-tree duality in abstract separation systems

    Full text link
    We prove a general width duality theorem for combinatorial structures with well-defined notions of cohesion and separation. These might be graphs and matroids, but can be much more general or quite different. The theorem asserts a duality between the existence of high cohesiveness somewhere local and a global overall tree structure. We describe cohesive substructures in a unified way in the format of tangles: as orientations of low-order separations satisfying certain consistency axioms. These axioms can be expressed without reference to the underlying structure, such as a graph or matroid, but just in terms of the poset of the separations themselves. This makes it possible to identify tangles, and apply our tangle-tree duality theorem, in very diverse settings. Our result implies all the classical duality theorems for width parameters in graph minor theory, such as path-width, tree-width, branch-width or rank-width. It yields new, tangle-type, duality theorems for tree-width and path-width. It implies the existence of width parameters dual to cohesive substructures such as kk-blocks, edge-tangles, or given subsets of tangles, for which no width duality theorems were previously known. Abstract separation systems can be found also in structures quite unlike graphs and matroids. For example, our theorem can be applied to image analysis by capturing the regions of an image as tangles of separations defined as natural partitions of its set of pixels. It can be applied in big data contexts by capturing clusters as tangles. It can be applied in the social sciences, e.g. by capturing as tangles the few typical mindsets of individuals found by a survey. It could also be applied in pure mathematics, e.g. to separations of compact manifolds.Comment: We have expanded Section 2 on terminology for better readability, adding explanatory text, examples, and figures. This paper replaces the first half of our earlier paper arXiv:1406.379

    Tangle-tree duality: in graphs, matroids and beyond

    Full text link
    We apply a recent duality theorem for tangles in abstract separation systems to derive tangle-type duality theorems for width-parameters in graphs and matroids. We further derive a duality theorem for the existence of clusters in large data sets. Our applications to graphs include new, tangle-type, duality theorems for tree-width, path-width, and tree-decompositions of small adhesion. Conversely, we show that carving width is dual to edge-tangles. For matroids we obtain a duality theorem for tree-width. Our results can be used to derive short proofs of all the classical duality theorems for width parameters in graph minor theory, such as path-width, tree-width, branch-width and rank-width.Comment: arXiv admin note: text overlap with arXiv:1406.379

    Inverse limit spaces satisfying a Poincare inequality

    Full text link
    We give conditions on Gromov-Hausdorff convergent inverse systems of metric measure graphs (and certain higher dimensional inverse systems of metric measure spaces) which imply that the measured Gromov-Hausdorff limit (equivalently, the inverse limit) is a PI space, i.e. it satisfies a doubling condition and a Poincare inequality in the sense of Heinonen-Koskela. We also give a systematic construction of examples for which our conditions are satisfied. Included are known examples of PI spaces, such as Laakso spaces, and a large class of new examples. Generically our graph examples have the property that they do not bilipschitz embed in any Banach space with Radon-Nikodym property, but they do embed in the Banach space L_1. For Laakso spaces, these facts were discussed in our earlier papers
    • …
    corecore