4,452 research outputs found

    To go deep or wide in learning?

    Full text link
    To achieve acceptable performance for AI tasks, one can either use sophisticated feature extraction methods as the first layer in a two-layered supervised learning model, or learn the features directly using a deep (multi-layered) model. While the first approach is very problem-specific, the second approach has computational overheads in learning multiple layers and fine-tuning of the model. In this paper, we propose an approach called wide learning based on arc-cosine kernels, that learns a single layer of infinite width. We propose exact and inexact learning strategies for wide learning and show that wide learning with single layer outperforms single layer as well as deep architectures of finite width for some benchmark datasets.Comment: 9 pages, 1 figure, Accepted for publication in Seventeenth International Conference on Artificial Intelligence and Statistic

    A Deep Incremental Boltzmann Machine for Modeling Context in Robots

    Get PDF
    Context is an essential capability for robots that are to be as adaptive as possible in challenging environments. Although there are many context modeling efforts, they assume a fixed structure and number of contexts. In this paper, we propose an incremental deep model that extends Restricted Boltzmann Machines. Our model gets one scene at a time, and gradually extends the contextual model when necessary, either by adding a new context or a new context layer to form a hierarchy. We show on a scene classification benchmark that our method converges to a good estimate of the contexts of the scenes, and performs better or on-par on several tasks compared to other incremental models or non-incremental models.Comment: 6 pages, 5 figures, International Conference on Robotics and Automation (ICRA 2018
    corecore