1,489 research outputs found

    Joint Beamforming and Power Control in Coordinated Multicell: Max-Min Duality, Effective Network and Large System Transition

    Full text link
    This paper studies joint beamforming and power control in a coordinated multicell downlink system that serves multiple users per cell to maximize the minimum weighted signal-to-interference-plus-noise ratio. The optimal solution and distributed algorithm with geometrically fast convergence rate are derived by employing the nonlinear Perron-Frobenius theory and the multicell network duality. The iterative algorithm, though operating in a distributed manner, still requires instantaneous power update within the coordinated cluster through the backhaul. The backhaul information exchange and message passing may become prohibitive with increasing number of transmit antennas and increasing number of users. In order to derive asymptotically optimal solution, random matrix theory is leveraged to design a distributed algorithm that only requires statistical information. The advantage of our approach is that there is no instantaneous power update through backhaul. Moreover, by using nonlinear Perron-Frobenius theory and random matrix theory, an effective primal network and an effective dual network are proposed to characterize and interpret the asymptotic solution.Comment: Some typos in the version publised in the IEEE Transactions on Wireless Communications are correcte

    Multi-Cell Random Beamforming: Achievable Rate and Degrees of Freedom Region

    Full text link
    Random beamforming (RBF) is a practically favourable transmission scheme for multiuser multi-antenna downlink systems since it requires only partial channel state information (CSI) at the transmitter. Under the conventional single-cell setup, RBF is known to achieve the optimal sum-capacity scaling law as the number of users goes to infinity, thanks to the multiuser diversity enabled transmission scheduling that virtually eliminates the intra-cell interference. In this paper, we extend the study of RBF to a more practical multi-cell downlink system with single-antenna receivers subject to the additional inter-cell interference (ICI). First, we consider the case of finite signal-to-noise ratio (SNR) at each receiver. We derive a closed-form expression of the achievable sum-rate with the multi-cell RBF, based upon which we show an asymptotic sum-rate scaling law as the number of users goes to infinity. Next, we consider the high-SNR regime and for tractable analysis assume that the number of users in each cell scales in a certain order with the per-cell SNR. Under this setup, we characterize the achievable degrees of freedom (DoF) for the single-cell case with RBF. Then we extend the analysis to the multi-cell RBF case by characterizing the DoF region. It is shown that the DoF region characterization provides useful guideline on how to design a cooperative multi-cell RBF system to achieve optimal throughput tradeoffs among different cells. Furthermore, our results reveal that the multi-cell RBF scheme achieves the "interference-free DoF" region upper bound for the multi-cell system, provided that the per-cell number of users has a sufficiently large scaling order with the SNR. Our result thus confirms the optimality of multi-cell RBF in this regime even without the complete CSI at the transmitter, as compared to other full-CSI requiring transmission schemes such as interference alignment.Comment: 28 pages, 6 figures, to appear in IEEE Transactions of Signal Processing. This work was presented in part at IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 25-30, 2012. The authors are with the Department of Electrical and Computer Engineering, National University of Singapore (emails: {hieudn, elezhang, elehht}@nus.edu.sg

    Fundamental Limits of Cooperation

    Full text link
    Cooperation is viewed as a key ingredient for interference management in wireless systems. This paper shows that cooperation has fundamental limitations. The main result is that even full cooperation between transmitters cannot in general change an interference-limited network to a noise-limited network. The key idea is that there exists a spectral efficiency upper bound that is independent of the transmit power. First, a spectral efficiency upper bound is established for systems that rely on pilot-assisted channel estimation; in this framework, cooperation is shown to be possible only within clusters of limited size, which are subject to out-of-cluster interference whose power scales with that of the in-cluster signals. Second, an upper bound is also shown to exist when cooperation is through noncoherent communication; thus, the spectral efficiency limitation is not a by-product of the reliance on pilot-assisted channel estimation. Consequently, existing literature that routinely assumes the high-power spectral efficiency scales with the log of the transmit power provides only a partial characterization. The complete characterization proposed in this paper subdivides the high-power regime into a degrees-of-freedom regime, where the scaling with the log of the transmit power holds approximately, and a saturation regime, where the spectral efficiency hits a ceiling that is independent of the power. Using a cellular system as an example, it is demonstrated that the spectral efficiency saturates at power levels of operational relevance.Comment: 27 page

    Massive MIMO Multicasting in Noncooperative Cellular Networks

    Full text link
    We study the massive multiple-input multiple-output (MIMO) multicast transmission in cellular networks where each base station (BS) is equipped with a large-scale antenna array and transmits a common message using a single beamformer to multiple mobile users. We first show that when each BS knows the perfect channel state information (CSI) of its own served users, the asymptotically optimal beamformer at each BS is a linear combination of the channel vectors of its multicast users. Moreover, the optimal combining coefficients are obtained in closed form. Then we consider the imperfect CSI scenario where the CSI is obtained through uplink channel estimation in timedivision duplex systems. We propose a new pilot scheme that estimates the composite channel which is a linear combination of the individual channels of multicast users in each cell. This scheme is able to completely eliminate pilot contamination. The pilot power control for optimizing the multicast beamformer at each BS is also derived. Numerical results show that the asymptotic performance of the proposed scheme is close to the ideal case with perfect CSI. Simulation also verifies the effectiveness of the proposed scheme with finite number of antennas at each BS.Comment: to appear in IEEE JSAC Special Issue on 5G Wireless Communication System

    Energy Efficiency Analysis of Idealized Coordinated Multi-Point Communication System

    Get PDF
    Coordinated multi-point (CoMP) architecture has proved to be very effective for improving the user fairness and spectral efficiency of cellular communication system, however, its energy efficiency remains to be evaluated. In this paper, CoMP system is idealized as a distributed antenna system by assuming perfect backhauling and cooperative processing. This simplified model allows us to express the capacity of the idealized CoMP system with a simple and accurate closed-form approximation. In addition, a framework for the energy efficiency analysis of CoMP system is introduced, which includes a power consumption model and an energy efficiency metric, i.e. bit-per-joule capacity. This framework along with our closed-form approximation are utilized for assessing both the channel and bit-per-joule capacities of the idealized CoMP system. Results indicate that multi-base-station cooperation can be energy efficient for cell-edge communication and that the backhauling and cooperative processing power should be kept low. Overall, it has been shown that the potential of improvement of CoMP in terms of bit-per-joule capacity is not as high as in terms of channel capacity due to associated energy cost for cooperative processing and backhauling
    corecore