11,734 research outputs found

    Last Round Convergence and No-Instant Regret in Repeated Games with Asymmetric Information

    Full text link
    This paper considers repeated games in which one player has more information about the game than the other players. In particular, we investigate repeated two-player zero-sum games where only the column player knows the payoff matrix A of the game. Suppose that while repeatedly playing this game, the row player chooses her strategy at each round by using a no-regret algorithm to minimize her (pseudo) regret. We develop a no-instant-regret algorithm for the column player to exhibit last round convergence to a minimax equilibrium. We show that our algorithm is efficient against a large set of popular no-regret algorithms of the row player, including the multiplicative weight update algorithm, the online mirror descent method/follow-the-regularized-leader, the linear multiplicative weight update algorithm, and the optimistic multiplicative weight update

    Exploiting No-Regret Algorithms in System Design

    Full text link
    We investigate a repeated two-player zero-sum game setting where the column player is also a designer of the system, and has full control on the design of the payoff matrix. In addition, the row player uses a no-regret algorithm to efficiently learn how to adapt their strategy to the column player's behaviour over time in order to achieve good total payoff. The goal of the column player is to guide her opponent to pick a mixed strategy which is favourable for the system designer. Therefore, she needs to: (i) design an appropriate payoff matrix AA whose unique minimax solution contains the desired mixed strategy of the row player; and (ii) strategically interact with the row player during a sequence of plays in order to guide her opponent to converge to that desired behaviour. To design such a payoff matrix, we propose a novel solution that provably has a unique minimax solution with the desired behaviour. We also investigate a relaxation of this problem where uniqueness is not required, but all the minimax solutions have the same mixed strategy for the row player. Finally, we propose a new game playing algorithm for the system designer and prove that it can guide the row player, who may play a \emph{stable} no-regret algorithm, to converge to a minimax solution

    On the Asymptotic Capacity of XX-Secure TT-Private Information Retrieval with Graph Based Replicated Storage

    Full text link
    The problem of private information retrieval with graph-based replicated storage was recently introduced by Raviv, Tamo and Yaakobi. Its capacity remains open in almost all cases. In this work the asymptotic (large number of messages) capacity of this problem is studied along with its generalizations to include arbitrary TT-privacy and XX-security constraints, where the privacy of the user must be protected against any set of up to TT colluding servers and the security of the stored data must be protected against any set of up to XX colluding servers. A general achievable scheme for arbitrary storage patterns is presented that achieves the rate (ρmin⁡−X−T)/N(\rho_{\min}-X-T)/N, where NN is the total number of servers, and each message is replicated at least ρmin⁥\rho_{\min} times. Notably, the scheme makes use of a special structure inspired by dual Generalized Reed Solomon (GRS) codes. A general converse is also presented. The two bounds are shown to match for many settings, including symmetric storage patterns. Finally, the asymptotic capacity is fully characterized for the case without security constraints (X=0)(X=0) for arbitrary storage patterns provided that each message is replicated no more than T+2T+2 times. As an example of this result, consider PIR with arbitrary graph based storage (T=1,X=0T=1, X=0) where every message is replicated at exactly 33 servers. For this 33-replicated storage setting, the asymptotic capacity is equal to 2/Îœ2(G)2/\nu_2(G) where Îœ2(G)\nu_2(G) is the maximum size of a 22-matching in a storage graph G[V,E]G[V,E]. In this undirected graph, the vertices VV correspond to the set of servers, and there is an edge uv∈Euv\in E between vertices u,vu,v only if a subset of messages is replicated at both servers uu and vv

    A Tight Algorithm for Strongly Connected Steiner Subgraph On Two Terminals With Demands

    Get PDF
    Given an edge-weighted directed graph G=(V,E)G=(V,E) on nn vertices and a set T={t1,t2,
,tp}T=\{t_1, t_2, \ldots, t_p\} of pp terminals, the objective of the \scss (pp-SCSS) problem is to find an edge set H⊆EH\subseteq E of minimum weight such that G[H]G[H] contains an ti→tjt_{i}\rightarrow t_j path for each 1≀i≠j≀p1\leq i\neq j\leq p. In this paper, we investigate the computational complexity of a variant of 22-SCSS where we have demands for the number of paths between each terminal pair. Formally, the \sharinggeneral problem is defined as follows: given an edge-weighted directed graph G=(V,E)G=(V,E) with weight function ω:E→R≄0\omega: E\rightarrow \mathbb{R}^{\geq 0}, two terminal vertices s,ts, t, and integers k1,k2k_1, k_2 ; the objective is to find a set of k1k_1 paths F1,F2,
,Fk1F_1, F_2, \ldots, F_{k_1} from s⇝ts\leadsto t and k2k_2 paths B1,B2,
,Bk2B_1, B_2, \ldots, B_{k_2} from t⇝st\leadsto s such that ∑e∈Eω(e)⋅ϕ(e)\sum_{e\in E} \omega(e)\cdot \phi(e) is minimized, where ϕ(e)=max⁥{∣{i∈[k1]:e∈Fi}∣ , ∣{j∈[k2]:e∈Bj}∣}\phi(e)= \max \Big\{|\{i\in [k_1] : e\in F_i\}|\ ,\ |\{j\in [k_2] : e\in B_j\}|\Big\}. For each k≄1k\geq 1, we show the following: The \sharing problem can be solved in nO(k)n^{O(k)} time. A matching lower bound for our algorithm: the \sharing problem does not have an f(k)⋅no(k)f(k)\cdot n^{o(k)} algorithm for any computable function ff, unless the Exponential Time Hypothesis (ETH) fails. Our algorithm for \sharing relies on a structural result regarding an optimal solution followed by using the idea of a "token game" similar to that of Feldman and Ruhl. We show with an example that the structural result does not hold for the \sharinggeneral problem if min⁥{k1,k2}≄2\min\{k_1, k_2\}\geq 2. Therefore \sharing is the most general problem one can attempt to solve with our techniques.Comment: To appear in Algorithmica. An extended abstract appeared in IPEC '1

    Codes for Asymmetric Limited-Magnitude Errors With Application to Multilevel Flash Memories

    Get PDF
    Several physical effects that limit the reliability and performance of multilevel flash memories induce errors that have low magnitudes and are dominantly asymmetric. This paper studies block codes for asymmetric limited-magnitude errors over q-ary channels. We propose code constructions and bounds for such channels when the number of errors is bounded by t and the error magnitudes are bounded by ℓ. The constructions utilize known codes for symmetric errors, over small alphabets, to protect large-alphabet symbols from asymmetric limited-magnitude errors. The encoding and decoding of these codes are performed over the small alphabet whose size depends only on the maximum error magnitude and is independent of the alphabet size of the outer code. Moreover, the size of the codes is shown to exceed the sizes of known codes (for related error models), and asymptotic rate-optimality results are proved. Extensions of the construction are proposed to accommodate variations on the error model and to include systematic codes as a benefit to practical implementation

    A match coefficient approach for damage imaging in structural components by ultrasonic synthetic aperture focus

    Get PDF
    Ultrasonic Synthetic Aperture Focus (SAF) techniques are commonly used to image structural defects. In this paper, a variation of SAF based on ideas borrowed from Matched Field Processing (MFP) is evaluated to reduce artifacts and sidelobes of the resulting images. In particular, instead of considering the full RF ultrasonic waveforms for the SAF time backpropagation, only selected features from the waveforms are utilized to form a “data vector” and a “replica” (expected) vector of MFP. These vectors are adaptive for the pair of transmitter-receiver and the focus point. The image is created as a matched filter between these two vectors. Experimental results are shown for an isotropic and homogenous metallic plate with simulated defects, probed by six piezoelectric patches used as receivers or transmitters

    Non-supersymmetric heterotic model building

    Get PDF
    We investigate orbifold and smooth Calabi-Yau compactifications of the non-supersymmetric heterotic SO(16)xSO(16) string. We focus on such Calabi-Yau backgrounds in order to recycle commonly employed techniques, like index theorems and cohomology theory, to determine both the fermionic and bosonic 4D spectra. We argue that the N=0 theory never leads to tachyons on smooth Calabi-Yaus in the large volume approximation. As twisted tachyons may arise on certain singular orbifolds, we conjecture that such tachyonic states are lifted in the full blow-up. We perform model searches on selected orbifold geometries. In particular, we construct an explicit example of a Standard Model-like theory with three generations and a single Higgs field.Comment: 1+30 pages latex, 11 tables; v2: references and minor revisions added, matches version published in JHE
    • 

    corecore