128 research outputs found

    A Systematic Review of Approximability Results for Traveling Salesman Problems leveraging the TSP-T3CO Definition Scheme

    Full text link
    The traveling salesman (or salesperson) problem, short TSP, is a problem of strong interest to many researchers from mathematics, economics, and computer science. Manifold TSP variants occur in nearly every scientific field and application domain: engineering, physics, biology, life sciences, and manufacturing just to name a few. Several thousand papers are published on theoretical research or application-oriented results each year. This paper provides the first systematic survey on the best currently known approximability and inapproximability results for well-known TSP variants such as the "standard" TSP, Path TSP, Bottleneck TSP, Maximum Scatter TSP, Generalized TSP, Clustered TSP, Traveling Purchaser Problem, Profitable Tour Problem, Quota TSP, Prize-Collecting TSP, Orienteering Problem, Time-dependent TSP, TSP with Time Windows, and the Orienteering Problem with Time Windows. The foundation of our survey is the definition scheme T3CO, which we propose as a uniform, easy-to-use and extensible means for the formal and precise definition of TSP variants. Applying T3CO to formally define the variant studied by a paper reveals subtle differences within the same named variant and also brings out the differences between the variants more clearly. We achieve the first comprehensive, concise, and compact representation of approximability results by using T3CO definitions. This makes it easier to understand the approximability landscape and the assumptions under which certain results hold. Open gaps become more evident and results can be compared more easily

    Towards the solution of variants of Vehicle Routing Problem

    Get PDF
    Some of the problems that are used extensively in -real life are NP complete problems. There is no any algorithm which can give the optimal solution to NP complete problems in the polynomial time in the worst case. So researchers are applying their best efforts to design the approximation algorithms for these NP complete problems. Approximation algorithm gives the solution of a particular problem, which is close to the optimal solution of that problem. In this paper, a study on variants of vehicle routing problem is being done along with the difference in the approximation ratios of different approximation algorithms as being given by researchers and it is found that Researchers are continuously applying their best efforts to design new approximation algorithms which have better approximation ratio as compared to the previously existing algorithms

    Towards the solution of variants of Vehicle Routing Problem

    Get PDF
    Some of the problems that are used extensively in -real life are NP complete problems. There is no any algorithm which can give the optimal solution to NP complete problems in the polynomial time in the worst case. So researchers are applying their best efforts to design the approximation algorithms for these NP complete problems. Approximation algorithm gives the solution of a particular problem, which is close to the optimal solution of that problem. In this paper, a study on variants of vehicle routing problem is being done along with the difference in the approximation ratios of different approximation algorithms as being given by researchers and it is found that Researchers are continuously applying their best efforts to design new approximation algorithms which have better approximation ratio as compared to the previously existing algorithms

    Online Service with Delay

    Full text link
    In this paper, we introduce the online service with delay problem. In this problem, there are nn points in a metric space that issue service requests over time, and a server that serves these requests. The goal is to minimize the sum of distance traveled by the server and the total delay in serving the requests. This problem models the fundamental tradeoff between batching requests to improve locality and reducing delay to improve response time, that has many applications in operations management, operating systems, logistics, supply chain management, and scheduling. Our main result is to show a poly-logarithmic competitive ratio for the online service with delay problem. This result is obtained by an algorithm that we call the preemptive service algorithm. The salient feature of this algorithm is a process called preemptive service, which uses a novel combination of (recursive) time forwarding and spatial exploration on a metric space. We hope this technique will be useful for related problems such as reordering buffer management, online TSP, vehicle routing, etc. We also generalize our results to k>1k > 1 servers.Comment: 30 pages, 11 figures, Appeared in 49th ACM Symposium on Theory of Computing (STOC), 201
    • …
    corecore