12,978 research outputs found

    Optimal Approximation Algorithms for Multi-agent Combinatorial Problems with Discounted Price Functions

    Full text link
    Submodular functions are an important class of functions in combinatorial optimization which satisfy the natural properties of decreasing marginal costs. The study of these functions has led to strong structural properties with applications in many areas. Recently, there has been significant interest in extending the theory of algorithms for optimizing combinatorial problems (such as network design problem of spanning tree) over submodular functions. Unfortunately, the lower bounds under the general class of submodular functions are known to be very high for many of the classical problems. In this paper, we introduce and study an important subclass of submodular functions, which we call discounted price functions. These functions are succinctly representable and generalize linear cost functions. In this paper we study the following fundamental combinatorial optimization problems: Edge Cover, Spanning Tree, Perfect Matching and Shortest Path, and obtain tight upper and lower bounds for these problems. The main technical contribution of this paper is designing novel adaptive greedy algorithms for the above problems. These algorithms greedily build the solution whist rectifying mistakes made in the previous steps

    Algorithms for Approximate Minimization of the Difference Between Submodular Functions, with Applications

    Full text link
    We extend the work of Narasimhan and Bilmes [30] for minimizing set functions representable as a difference between submodular functions. Similar to [30], our new algorithms are guaranteed to monotonically reduce the objective function at every step. We empirically and theoretically show that the per-iteration cost of our algorithms is much less than [30], and our algorithms can be used to efficiently minimize a difference between submodular functions under various combinatorial constraints, a problem not previously addressed. We provide computational bounds and a hardness result on the mul- tiplicative inapproximability of minimizing the difference between submodular functions. We show, however, that it is possible to give worst-case additive bounds by providing a polynomial time computable lower-bound on the minima. Finally we show how a number of machine learning problems can be modeled as minimizing the difference between submodular functions. We experimentally show the validity of our algorithms by testing them on the problem of feature selection with submodular cost features.Comment: 17 pages, 8 figures. A shorter version of this appeared in Proc. Uncertainty in Artificial Intelligence (UAI), Catalina Islands, 201

    Randomized Strategies for Robust Combinatorial Optimization

    Full text link
    In this paper, we study the following robust optimization problem. Given an independence system and candidate objective functions, we choose an independent set, and then an adversary chooses one objective function, knowing our choice. Our goal is to find a randomized strategy (i.e., a probability distribution over the independent sets) that maximizes the expected objective value. To solve the problem, we propose two types of schemes for designing approximation algorithms. One scheme is for the case when objective functions are linear. It first finds an approximately optimal aggregated strategy and then retrieves a desired solution with little loss of the objective value. The approximation ratio depends on a relaxation of an independence system polytope. As applications, we provide approximation algorithms for a knapsack constraint or a matroid intersection by developing appropriate relaxations and retrievals. The other scheme is based on the multiplicative weights update method. A key technique is to introduce a new concept called (η,γ)(\eta,\gamma)-reductions for objective functions with parameters η,γ\eta, \gamma. We show that our scheme outputs a nearly α\alpha-approximate solution if there exists an α\alpha-approximation algorithm for a subproblem defined by (η,γ)(\eta,\gamma)-reductions. This improves approximation ratio in previous results. Using our result, we provide approximation algorithms when the objective functions are submodular or correspond to the cardinality robustness for the knapsack problem

    Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions

    Full text link
    We investigate three related and important problems connected to machine learning: approximating a submodular function everywhere, learning a submodular function (in a PAC-like setting [53]), and constrained minimization of submodular functions. We show that the complexity of all three problems depends on the 'curvature' of the submodular function, and provide lower and upper bounds that refine and improve previous results [3, 16, 18, 52]. Our proof techniques are fairly generic. We either use a black-box transformation of the function (for approximation and learning), or a transformation of algorithms to use an appropriate surrogate function (for minimization). Curiously, curvature has been known to influence approximations for submodular maximization [7, 55], but its effect on minimization, approximation and learning has hitherto been open. We complete this picture, and also support our theoretical claims by empirical results.Comment: 21 pages. A shorter version appeared in Advances of NIPS-201

    Bayesian Incentive Compatibility via Fractional Assignments

    Full text link
    Very recently, Hartline and Lucier studied single-parameter mechanism design problems in the Bayesian setting. They proposed a black-box reduction that converted Bayesian approximation algorithms into Bayesian-Incentive-Compatible (BIC) mechanisms while preserving social welfare. It remains a major open question if one can find similar reduction in the more important multi-parameter setting. In this paper, we give positive answer to this question when the prior distribution has finite and small support. We propose a black-box reduction for designing BIC multi-parameter mechanisms. The reduction converts any algorithm into an eps-BIC mechanism with only marginal loss in social welfare. As a result, for combinatorial auctions with sub-additive agents we get an eps-BIC mechanism that achieves constant approximation.Comment: 22 pages, 1 figur

    Online Influence Maximization in Non-Stationary Social Networks

    Full text link
    Social networks have been popular platforms for information propagation. An important use case is viral marketing: given a promotion budget, an advertiser can choose some influential users as the seed set and provide them free or discounted sample products; in this way, the advertiser hopes to increase the popularity of the product in the users' friend circles by the world-of-mouth effect, and thus maximizes the number of users that information of the production can reach. There has been a body of literature studying the influence maximization problem. Nevertheless, the existing studies mostly investigate the problem on a one-off basis, assuming fixed known influence probabilities among users, or the knowledge of the exact social network topology. In practice, the social network topology and the influence probabilities are typically unknown to the advertiser, which can be varying over time, i.e., in cases of newly established, strengthened or weakened social ties. In this paper, we focus on a dynamic non-stationary social network and design a randomized algorithm, RSB, based on multi-armed bandit optimization, to maximize influence propagation over time. The algorithm produces a sequence of online decisions and calibrates its explore-exploit strategy utilizing outcomes of previous decisions. It is rigorously proven to achieve an upper-bounded regret in reward and applicable to large-scale social networks. Practical effectiveness of the algorithm is evaluated using both synthetic and real-world datasets, which demonstrates that our algorithm outperforms previous stationary methods under non-stationary conditions.Comment: 10 pages. To appear in IEEE/ACM IWQoS 2016. Full versio
    • …
    corecore