8,076 research outputs found

    State Amplification

    Full text link
    We consider the problem of transmitting data at rate R over a state dependent channel p(y|x,s) with the state information available at the sender and at the same time conveying the information about the channel state itself to the receiver. The amount of state information that can be learned at the receiver is captured by the mutual information I(S^n; Y^n) between the state sequence S^n and the channel output Y^n. The optimal tradeoff is characterized between the information transmission rate R and the state uncertainty reduction rate \Delta, when the state information is either causally or noncausally available at the sender. This result is closely related and in a sense dual to a recent study by Merhav and Shamai, which solves the problem of masking the state information from the receiver rather than conveying it.Comment: 9 pages, 4 figures, submitted to IEEE Trans. Inform. Theory, revise

    Two-way quantum communication channels

    Get PDF
    We consider communication between two parties using a bipartite quantum operation, which constitutes the most general quantum mechanical model of two-party communication. We primarily focus on the simultaneous forward and backward communication of classical messages. For the case in which the two parties share unlimited prior entanglement, we give inner and outer bounds on the achievable rate region that generalize classical results due to Shannon. In particular, using a protocol of Bennett, Harrow, Leung, and Smolin, we give a one-shot expression in terms of the Holevo information for the entanglement-assisted one-way capacity of a two-way quantum channel. As applications, we rederive two known additivity results for one-way channel capacities: the entanglement-assisted capacity of a general one-way channel, and the unassisted capacity of an entanglement-breaking one-way channel.Comment: 21 pages, 3 figure

    On Marton's inner bound for broadcast channels

    Full text link
    Marton's inner bound is the best known achievable region for a general discrete memoryless broadcast channel. To compute Marton's inner bound one has to solve an optimization problem over a set of joint distributions on the input and auxiliary random variables. The optimizers turn out to be structured in many cases. Finding properties of optimizers not only results in efficient evaluation of the region, but it may also help one to prove factorization of Marton's inner bound (and thus its optimality). The first part of this paper formulates this factorization approach explicitly and states some conjectures and results along this line. The second part of this paper focuses primarily on the structure of the optimizers. This section is inspired by a new binary inequality that recently resulted in a very simple characterization of the sum-rate of Marton's inner bound for binary input broadcast channels. This prompted us to investigate whether this inequality can be extended to larger cardinality input alphabets. We show that several of the results for the binary input case do carry over for higher cardinality alphabets and we present a collection of results that help restrict the search space of probability distributions to evaluate the boundary of Marton's inner bound in the general case. We also prove a new inequality for the binary skew-symmetric broadcast channel that yields a very simple characterization of the entire Marton inner bound for this channel.Comment: Submitted to ISIT 201

    Critical Noise Levels for LDPC decoding

    Get PDF
    We determine the critical noise level for decoding low density parity check error correcting codes based on the magnetization enumerator (\cM), rather than on the weight enumerator (\cW) employed in the information theory literature. The interpretation of our method is appealingly simple, and the relation between the different decoding schemes such as typical pairs decoding, MAP, and finite temperature decoding (MPM) becomes clear. In addition, our analysis provides an explanation for the difference in performance between MN and Gallager codes. Our results are more optimistic than those derived via the methods of information theory and are in excellent agreement with recent results from another statistical physics approach.Comment: 9 pages, 5 figure
    • …
    corecore