4,349 research outputs found

    Computing Algebraic Matroids

    Full text link
    An affine variety induces the structure of an algebraic matroid on the set of coordinates of the ambient space. The matroid has two natural decorations: a circuit polynomial attached to each circuit, and the degree of the projection map to each base, called the base degree. Decorated algebraic matroids can be computed via symbolic computation using Groebner bases, or through linear algebra in the space of differentials (with decorations calculated using numerical algebraic geometry). Both algorithms are developed here. Failure of the second algorithm occurs on a subvariety called the non-matroidal or NM- locus. Decorated algebraic matroids have widespread relevance anywhere that coordinates have combinatorial significance. Examples are computed from applied algebra, in algebraic statistics and chemical reaction network theory, as well as more theoretical examples from algebraic geometry and matroid theory.Comment: 15 pages; added link to references, note on page 1, and small formatting fixe

    Algebraic matroids with graph symmetry

    Get PDF
    This paper studies the properties of two kinds of matroids: (a) algebraic matroids and (b) finite and infinite matroids whose ground set have some canonical symmetry, for example row and column symmetry and transposition symmetry. For (a) algebraic matroids, we expose cryptomorphisms making them accessible to techniques from commutative algebra. This allows us to introduce for each circuit in an algebraic matroid an invariant called circuit polynomial, generalizing the minimal poly- nomial in classical Galois theory, and studying the matroid structure with multivariate methods. For (b) matroids with symmetries we introduce combinatorial invariants capturing structural properties of the rank function and its limit behavior, and obtain proofs which are purely combinatorial and do not assume algebraicity of the matroid; these imply and generalize known results in some specific cases where the matroid is also algebraic. These results are motivated by, and readily applicable to framework rigidity, low-rank matrix completion and determinantal varieties, which lie in the intersection of (a) and (b) where additional results can be derived. We study the corresponding matroids and their associated invariants, and for selected cases, we characterize the matroidal structure and the circuit polynomials completely

    A note on algebraic rank, matroids, and metrized complexes

    Full text link
    We show that the algebraic rank of divisors on certain graphs is related to the realizability problem of matroids. As a consequence, we produce a series of examples in which the algebraic rank depends on the ground field. We use the theory of metrized complexes to show that equality between the algebraic and combinatorial rank is not a sufficient condition for smoothability of divisors, thus giving a negative answer to a question posed by Caporaso, Melo, and the author.Comment: To appear in Mathematical Research Letter

    Secret-Sharing Matroids need not be Algebraic

    Full text link
    We combine some known results and techniques with new ones to show that there exists a non-algebraic, multi-linear matroid. This answers an open question by Matus (Discrete Mathematics 1999), and an open question by Pendavingh and van Zwam (Advances in Applied Mathematics 2013). The proof is constructive and the matroid is explicitly given

    Characteristic Sets of Matroids

    Get PDF
    Matroids are combinatorial structures that generalize the properties of linear independence. But not all matroids have linear representations. Furthermore, the existence of linear representations depends on the characteristic of the fields, and the linear characteristic set is the set of characteristics of fields over which a matroid has a linear representation. The algebraic independence in a field extension also defines a matroid, and also depends on the characteristic of the fields. The algebraic characteristic set is defined in the similar way as the linear characteristic set. The linear representations and characteristic sets are well studied. But the algebraic representations and characteristic sets received much less attention, and the possible algebraic characteristic sets are still not completely known. This dissertation is a study of possible pairs of linear-algebraic characteristic sets of matroids. Furthermore, if a matroid has an algebraic representation over a positive characteristic field, then the matroid can be represented by a particular set of linear matroids in a field of the same characteristic, called Frobenius flock. In this dissertation, we also have studied Frobenius flock representations, and possible flock characteristic sets

    Algebraic matroids and Frobenius flocks

    Get PDF
    We show that each algebraic representation of a matroid MM in positive characteristic determines a matroid valuation of MM, which we have named the {\em Lindstr\"om valuation}. If this valuation is trivial, then a linear representation of MM in characteristic pp can be derived from the algebraic representation. Thus, so-called rigid matroids, which only admit trivial valuations, are algebraic in positive characteristic pp if and only if they are linear in characteristic pp. To construct the Lindstr\"om valuation, we introduce new matroid representations called flocks, and show that each algebraic representation of a matroid induces flock representations.Comment: 21 pages, 1 figur
    • …
    corecore