11 research outputs found

    Serial Search Based Code Acquisition in the Cooperative MIMO Aided DS-CDMA Downlink

    Get PDF
    Full text of this paper is not available in UHRAFocal blockade of postsynaptic acetylcholine receptors (AChRs) in a small region of the neuromuscular junction may cause long-term synapse elimination at that site. Blockade of the whole junction does not cause synapse loss, indicating that it is the contrast in postsynaptic activity between the blocked and unblocked regions which causes withdrawal of the synaptic terminals. This phenomenon can be explained by the dual role of calcium, both in controlling AChR gene transcription and influencing AChR aggregation. A computational model is provided and the stability of the solutions is confirmed by theoretical analysis and computer simulation

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    Initial Code Acquisition in the Cooperative Noncoherent MIMO DS-CDMA Downlink

    Full text link

    Wireless Localization Systems: Statistical Modeling and Algorithm Design

    Get PDF
    Wireless localization systems are essential for emerging applications that rely on context-awareness, especially in civil, logistic, and security sectors. Accurate localization in indoor environments is still a challenge and triggers a fervent research activity worldwide. The performance of such systems relies on the quality of range measurements gathered by processing wireless signals within the sensors composing the localization system. Such range estimates serve as observations for the target position inference. The quality of range estimates depends on the network intrinsic properties and signal processing techniques. Therefore, the system design and analysis call for the statistical modeling of range information and the algorithm design for ranging, localization and tracking. The main objectives of this thesis are: (i) the derivation of statistical models and (ii) the design of algorithms for different wire- less localization systems, with particular regard to passive and semi-passive systems (i.e., active radar systems, passive radar systems, and radio frequency identification systems). Statistical models for the range information are derived, low-complexity algorithms with soft-decision and hard-decision are proposed, and several wideband localization systems have been analyzed. The research activity has been conducted also within the framework of different projects in collaboration with companies and other universities, and within a one-year-long research period at Massachusetts Institute of Technology, Cambridge, MA, USA. The analysis of system performance, the derived models, and the proposed algorithms are validated considering different case studies in realistic scenarios and also using the results obtained under the aforementioned projects

    First-passage-time problems in time-aware networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 183-194).First passage time or the first time that a stochastic process crosses a boundary is a random variable whose probability distribution is sought in engineering, statistics, finance, and other disciplines. The probability distribution of the first passage time has practical utility but is difficult to obtain because the values of the stochastic process at different times often constitute dependent random variables. As a result, most first-passage-time problems are still open and few of them are explicitly solved. In this thesis, we solve a large class of first-passage-time problems and demonstrate the applications of our solutions to networks that need to maintain common-time references. Motivated by rich applications of first passage time, we solve first-passage-time problems, which are divided into four categories according to the form of stochastic processes and the type of the boundaries. The four categories cover Brownian motion with quadratic drift and the boundary that consists of two constants; Brownian motion with polynomial drift of an arbitrary degree and the boundary that consists of two constants; multi-dimensional Brownian motion with polynomial drift and a class of boundaries that are characterized by open sets in the Euclidean space; and a discrete-time process with a class of correlations and the boundary that consists of one constant. These first-passage-time problems are challenging yet important for practical utility. The solutions to these first-passage-time problems range from an explicit expression to a bound of the first-passage-time distribution, reflecting the inherent difficulty in these first-passage-time problems. For Brownian motion with quadratic drift, the solution is explicit, consisting of elementary functions and functions that are characterized by Laplace transforms. For Brownian motion with polynomial drift of an arbitrary order, the solution involves analytical and numerical methods. For multi-dimensional Brownian motion, the solution is explicit for a certain shape of the boundary and is given by an upper bound and a lower bound for the other shapes. For the discrete-time process, the solution is explicit. The strength of our solutions is that they cover a large class of first-passage-time problems and are easy to use. The primary approach that allows us to solve these first-passage-time problems is transformation methodology. We apply various types of transformations, including transformation of probability measure, transformation of time, and integral transformation. Although these transformations are known, the combination of them in an appropriate order enables the solutions to previously-unsolved first-passage-time problems. We also discuss other problems that can be solved as consequences of the transformation methodology, including first-passage-time problems that involve a one-sided constant boundary, a moving boundary, and drifts such as logarithmic, exponential, sinusoidal, and square-root functions. A large class of first-passage-time problems confirms the utility of the transformation methodology. We demonstrate an application of the first-passage-time problems in the context of network synchronization. In the first setting that we consider, the first passage time is the first time that a network loses synchronization with a reference clock. At the first passage time, clocks in the network need to be calibrated. In the second setting, the first passage time represents the first time that a node achieves a correct synchronization of frames or packets. At the first passage time, a node in the network is able to process the packets that are transmitted as parts of the calibration. In both settings, we consider two performance metrics-the average and the outage-which succinctly summarize the first passage time. These metrics give insight, for example, into the amount of time for networks to lose synchronization as a function of key parameters such as noise in the clocks and the number of nodes in the network. Given the large class of first-passage-time problems being solved, we expect the thesis results to be useful in many disciplines where first-passage-time problems appear.by Watcharapan Suwansantisuk.Ph.D

    Initial Synchronisation in the Multiple-Input Multiple-Output Aided Single- and Multi-Carrier DS-CDMA as well as DS-UWB Downlink

    No full text
    In this thesis, we propose and investigate code acquisition schemes employing both colocated and cooperative Multiple Input/Multiple Output (MIMO) aided Single-Carrier (SC) and Multi-Carrier (MC) Code Division Multiple Access (CDMA) DownLink (DL) schemes. We study their characteristics and performance in terms of both Non-Coherent (NC) and Differentially Coherent (DC) MIMO scenarios. Furthermore, we also propose iterative code acquisition schemes for the Direct Sequence-Ultra WideBand (DS-UWB) DL. There is a paucity of code acquisition techniques designed for transmit diversity aided systems. Moreover, there are no in-depth studies representing the fundamental characteristics of code acquisition schemes employing both co-located and cooperative MIMOs. Hence we investigate both NC and DC code acquisition schemes in the co-located and cooperative MIMO aided SC and MC DS-CDMA DL, when communicating over spatially uncorrelated Rayleigh channels. The issues of NC initial and post-initial acquisition schemes as well as DC schemes are studied as a function of the number of co-located antennas by quantifying the attainable correct detection probability and mean acquisition time performances. The research of DS-UWB systems has recently attracted a significant interest in both the academic and industrial community. In the DS-UWB DL, initial acquisition is required for both coarse timing as well as code phase alignment. Both of these constitute a challenging problem owing to the extremely short chip-duration of UWB systems. This leads to a huge acquisition search space size, which is represented as the product of the number of legitimate code phases in the uncertainty region of the PN code and the number of legitimate signalling pulse positions. Therefore the benefits of the iterative code acquisition schemes are analysed in terms of the achievable correct detection probability and mean acquisition time performances. Hence we significantly reduce the search space size with the aid of a Tanner graph based Message Passing (MP) technique, which is combined with the employment of beneficially selected generator polynomials, multiple receive antennas and appropriately designed multiple-component decoders. Finally, we characterise a range of two-stage iterative acquisition schemes employing iterative MP designed for a multiple receive antenna assisted DS-UWB DL scenario
    corecore