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Abstract

First passage time or the first time that a stochastic process crosses a boundary is
a random variable whose probability distribution is sought in engineering, statistics,
finance, and other disciplines. The probability distribution of the first passage time
has practical utility but is difficult to obtain because the values of the stochastic
process at different times often constitute dependent random variables. As a result,
most first-passage-time problems are still open and few of them are explicitly solved.
In this thesis, we solve a large class of first-passage-time problems and demonstrate
the applications of our solutions to networks that need to maintain common-time
references.

Motivated by rich applications of first passage time, we solve first-passage-time

problems, which are divided into four categories according to the form of stochastic

processes and the type of the boundaries. The four categories cover Brownian mo-

tion with quadratic drift and the boundary that consists of two constants; Brownian
motion with polynomial drift of an arbitrary degree and the boundary that consists

of two constants; multi-dimensional Brownian motion with polynomial drift and a

class of boundaries that are characterized by open sets in the Euclidean space; and

a discrete-time process with a class of correlations and the boundary that consists

of one constant. These first-passage-time problems are challenging yet important for

practical utility.
The solutions to these first-passage-time problems range from an explicit expres-

sion to a bound of the first-passage-time distribution, reflecting the inherent dif-

ficulty in these first-passage-time problems. For Brownian motion with quadratic

drift, the solution is explicit, consisting of elementary functions and functions that

are characterized by Laplace transforms. For Brownian motion with polynomial drift

of an arbitrary order, the solution involves analytical and numerical methods. For
multi-dimensional Brownian motion, the solution is explicit for a certain shape of the
boundary and is given by an upper bound and a lower bound for the other shapes.
For the discrete-time process, the solution is explicit. The strength of our solutions
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is that they cover a large class of first-passage-time problems and are easy to use.
The primary approach that allows us to solve these first-passage-time problems is

transformation methodology. We apply various types of transformations, including
transformation of probability measure, transformation of time, and integral trans-
formation. Although these transformations are known, the combination of them in
an appropriate order enables the solutions to previously-unsolved first-passage-time
problems. We also discuss other problems that can be solved as consequences of
the transformation methodology, including first-passage-time problems that involve
a one-sided constant boundary, a moving boundary, and drifts such as logarithmic,
exponential, sinusoidal, and square-root functions. A large class of first-passage-time
problems confirms the utility of the transformation methodology.

We demonstrate an application of the first-passage-time problems in the context
of network synchronization. In the first setting that we consider, the first passage
time is the first time that a network loses synchronization with a reference clock. At
the first passage time, clocks in the network need to be calibrated. In the second
setting, the first passage time represents the first time that a node achieves a correct
synchronization of frames or packets. At the first passage time, a node in the network
is able to process the packets that are transmitted as parts of the calibration. In both
settings, we consider two performance metrics-the average and the outage-which
succinctly summarize the first passage time. These metrics give insight, for example,
into the amount of time for networks to lose synchronization as a function of key
parameters such as noise in the clocks and the number of nodes in the network. Given
the large class of first-passage-time problems being solved, we expect the thesis results
to be useful in many disciplines where first-passage-time problems appear.

Thesis Supervisor: Moe Z. Win
Title: Associate Professor
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Chapter 1

Introduction

The first passage time, or the first time that a random process crosses a boundary,

is of importance in many fields. The first passage time is a random variable that

appears, for example, in biology, statistics, physics, finance, and engineering. In

general, first-passage-time problems aim to determine the probability distributions or

the equivalent characterizations.

First-Passage-Time problems are difficult to solve. The difficulty in first-passage-

time problems is mainly due to the dependency across times of random processes. To

solve the first-passage-time problem, we need to know the trajectory of the random

process, a requirement for the joint probability of values of the random process at

all times. Every unsolved first passage problem involves an infinite set of dependent

random variables, a source of difficulty. Given this difficulty, most first-passage-time

problems are open and few of them are solved explicitly.

Motivated by the rich applications of first-passage-time problems, we solve a large

class of first-passage-time problems in this thesis. Then, we demonstrate the appli-

cations of our first-passage-time solutions to network synchronization. Solutions to

these first-passage-time problems and their applications constitute the main research

results in this thesis.

The class of problems that we aim to solve are divided into four categories, accord-

ing to the form of the random processes and the boundaries. These four categories

are as follows:

17



Brownian motion with quadratic drift: This first-passage-time problem in-

volves Brownian motion with quadratic drift and a boundary that consists of two

constants. Our solution to this first-passage-time problem is an explicit expression of

the probability density function (PDF) for the first passage time. The solution has

applications to clock synchronization.

Brownian motion with polynomial drift: This first-passage-time problem

involves Brownian motion with polynomial drift and a boundary that consists of

two constants. The polynomial may have an arbitrary degree although the case of

polynomials with degree two is more suitable to be solved using the method for

Brownian motion with quadratic drift (the first problem that we study). A class of

polynomials is a dense subset of the class of continuous functions, making the class of

polynomials an important class of drifts to study. Our solution to this first-passage-

time problem is an expression of the PDF for the first passage time. The solution has

applications to clock synchronization.

Multi-dimensional Brownian motion: This first-passage-time problem in-

volves multi-dimensional Brownian motion with polynomial drift and a boundary

that belongs to a family of open sets in the Euclidean space. Our solution to this

first-passage-time problem is an expression of the cumulative density function (CDF)

for certain open sets and the bounds of the CDF for other open sets. The solution

has applications to network synchronization.

Discrete-Time process: This first-passage-time problem involves a discrete time

process and a boundary consisting of a constant. The random process has a certain

correlation across time. Our solution to this this first-passage-time problem is the

expressions of the CDF and the expectation for the first passage time. The solution

has applications to frame synchronization.

The most important mathematical technique that enables us to solve the first-

passage-time problem is transformation methodology. To solve the first-passage-time

problems that involve Brownian motion with quadratic drift and polynomial drift,

we transform Brownian motion with drift into Brownian motion without drift, large

time into small time, a stochastic integration into a Riemann integration with a

18



random integrand, a conditional expectation into an expectation, and an expectation

into a solution to a differential equation. To solve the first-passage-time problems

that involve multi-dimensional Brownian motion and discrete-time process, we apply

rules in measure theory, probability theory, ordered statistics, and renewal theory.

The combination of these approaches provides the solutions to the first-passage-time

distributions.

To demonstrate rich applications of our solutions, we consider three important

aspects of time-aware networks from a standpoint of synchronization. In the first set-

ting, we aim to understand the amount of time until two clocks need to be calibrated.

In the second setting, we aim to understand the amount of time until a network of

clocks needs to be calibrated. In the third setting, we aim to understand the amount

of time until frame synchronization is completed. The amount of time that appears in

these settings are first passage times, whose probability distributions are immediate

consequences of this research. We will characterize the first passage times in these

settings by two performance metrics: the average and the outage. These performance

metrics give insight into the amount of time to calibration and the amount of time

time to successfully acquiring the frames or packets during the synchronization phase.

In summary, we study a large class of first-passage-time problems, motivated by

their rich applications. First-passage-time problems are difficult to solve in general.

But we are able to obtain the solutions by using transformation methodology and

approaches from measure theory, probability theory, ordered statistics, and renewal

theory. We demonstrate the applications of our first-passage-time distributions to

network synchronization. We expect the contributions to have practical utility in

many fields where first-passage-time problems appear.

The remaining part of this chapter is organized as follows. In Section 1.1, we state

the objectives of this thesis. In Section 1.2, we describe the scope of the research. In

Section 1.3, we provide lists of the acronyms, notations, and definitions that frequently

appear in the thesis. In Section 1.4, we summarize the main contributions of this

research. In the last paragraph of this chapter, we outline the organization of this

thesis.
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1.1 Objectives of this Research

The objectives of this research are the following:

1. To obtain the probability distribution of the first passage time of a Brownian

motion with quadratic drift, to exit from a boundary consisting of two constants;

2. To obtain the probability distribution of the first passage time of a Brown-

ian motion with polynomial drift, to exit from a boundary consisting of two

constants;

3. To obtain and bound the probability distribution of the first passage time of a

multi-dimensional Brownian motion with polynomial drift, to exit from a class

of boundaries that are given by open sets in the Euclidean space;

4. To obtain the probability distribution of the amount of time to correctly acquire

a packet;

5. To apply the results on first-passage-time distributions to time-aware networks.

We will discuss the research methodology that helps us achieve these objectives

in Chap. 3. Then, we will provide the research results that address these objectives

in Chap. 4.

1.2 Scope of this Research

This research focuses on certain types of clocks and a certain aspect of network

synchronization. The scope of this research is as follows.

e Time process at a clock takes the form of Brownian motion with quadratic

drift. This model is reasonable when the white frequency modulation noise is

the dominant type of clock noises.

* Clocks in the network are to be synchronized with a reference clock. -This model

is suitable when the network needs to maintain the absolute time as opposed

to the relative time.

20



The above scope allows this research to balance between applications and tractabil-

ity.

1.3 Acronyms, Notations, and Definitions

Below is a summary of acronyms, notations, and definitions that frequently appear

in the thesis.

Acronyms

a.e. almost everywhere

a.s. almost surely

ATM asynchronous transfer mode

AWGN additive white Gaussian noise

CDF cumulative density function

CSS conventional serial search

CMF cumulative mass function

FSS-Nj fixed-step serial search with a step size Nj

IBVP initial-boundary value problem

IID independent and identically distributed

MAT mean acquisition time

MGF moment generating function

MSS marker spacing span

PDE partial differential equation

PDF probability density function

PMF probability mass function

SNR signal to noise ratio

Notations

The serif font indicates random variables and random processes, except for the Greek

letter r, which denotes a random time and does not have a serif font.
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Here are the frequently-used symbols:

a

b

0

R

A c B

|Al

(p, q)

limx\,Xo fz W

f'l

inf A

NV(p, o.2)

0)

Q ()
1AQ)

F(-)

Ai(-), Bi(-)

22

a real number, representing a barrier

a real number, representing a barrier, a < b

the empty set

the set of real numbers

set A is a subset of set B, i.e., every element of A is an element of

B. Note that A C A for every set A

the number of elements in a finite set A

a set of real numbers x's such that p < x < q

the limit of function f as x approaches xo from the right, i.e., a

number q such that f(t,) -- q as n -+ oc for all sequences {t,} in

(Xo, oo) such that ti, -+ xo

The derivative of function f
the greatest lower bound, or the infimum, of a set A C R. If A is

an empty set, we define inf A = oc. If A is not bounded from below

(this case does not occur in this research), we define inf A = -oc

normal distribution with mean y and variance U2

the PDF of the standard normal, NJ(O, 1), random variable: o(x) =

-- e- 2/2, for I E R

the CDF of the standard normal, IN(O, 1), random variable: <1(x) =

f_, p(y)dy

the Gaussian Q-function: Q (x) =1 -- <b(x)

the indicator function of set A, i.e., 1A(x) = 1 if x c A; and A(x) =

0 if x A

the gamma function: F(z) f"O tz-le-zdt for any complex number

z whose real part is positive

Airy functions: Ai(z) = cif(z) - c2 g(z) and Bi(z) = v/5[cif(z) +

c2g(z)] for any complex number z, where f(z) = J:' 3k (1) Zi!

~Xkk k (3k)!
g(z) E 3 k k 3k+1), ci = 3- 2/ 3 F (2/3), c 2  3- 1/ 3F(2/3), and

(z), = F(z + n)/F(z) (Pochhammer's symbol)



[x] the smallest integer m such that x < m

x A y the minimum between x and y

Xt a random process, for t > 0

P Probability measure corresponding to standard Brownian motion

PX probability measure corresponding to Brownian motion with initial

position x E R

P Probability measure corresponding to multi-dimensional Brownian

motion with initial position at the origin

E Expectation with respect to probability measure P

E Expectation with respect to probability measure P

Bt a standard Brownian motion with respect to the probability space

(Q, F, P), for t > 0

o-(X) the o-algebra generated by random variable X

Ft the o-algebra generated by {B, : 0 < s < t}

Ta,b inf {t > 0 : Xt (a, b)}, i.e., the first time that a random process Xt

takes the value outside an open interval (a, b)

Ta,b inf {t > 0 : Bt V (a, b)}, i.e., the first time that a random process Bt

takes the value outside an open interval (a, b)

fx() PDF of random variable X, i.e., if X is defined on the probability

space (Q,.F, P), then P(dx) = fx(x)dx

Definitions

First passage time (a random variable) is the first time that a random process takes

the value outside an open set.

A time-aware network is a set of nodes (such as the transmitters, receivers, satellites,

or other electronic devices) that need to maintain a common time reference.

1.4 Contributions of this Research

The main contributions of this research are as follows:
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" A methodology involving transformation techniques to solve a large class of

first-passage-time problems;

" A survey of mathematical models for the time process;

e A survey of methods to solve first-passage-time problems;

" Explicit expression for the probability distribution of the first time that Brow-

nian motion with quadratic drift crosses a two-sided, constant boundary;

" Analytical expression for the probability distribution of the first time that Brow-

nian motion with polynomial drift crosses a two-sided, constant boundary;

" Analytical expression and bounds for the probability distribution of the first

time that a multi-dimensional Brownian motion exits a class of boundaries;

" Explicit expressions for probability distribution for the first time at which frame

synchronization is correctly achieved;

" Proposal of two metrics (expectation and outage) that can be used to measure

the calibration time in a network;

" Applications of first passage time to synchronization of a pair of clocks;

* Applications of first passage time to synchronization of a network; and

" Applications of first passage time to frame synchronization.

Given the rich applications of first-passage-time problems, we expect the contributions

to be useful in many disciplines.

The remaining part of this thesis is organized as follows. In the next chapter

(Chap. 2), we review existing work related to this research. In (Chap. 3), we outline

the methodologies that help us achieve the objectives of this research. In Chap. 4, we

present the research results, which address the above objectives. Finally, in Chap. 5,

we conclude the thesis and summarize important findings.
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Chapter 2

Literature Review

In this chapter, we survey existing work related to the thesis. In Section 2.1, we

provide an overview on synchronization, which is a crucial task for transmitters and

receivers employing digital transmissions. In Section 2.2, we discuss mathematical

models for time processes of clocks. In Section 2.3, we provide an overview of first-

passage-time problems. In Section 2.4, we survey known methods to solve first-

passage-time problems. We now describe the existing work in detail.

2.1 Synchronization

Synchronization refers to the task of regulating the clocks among the transmitters

and the receivers. Synchronization can be achieved at the frame level and at the

waveform level, among many possibilities. At the frame level, the clocks are virtual

clocks, which tick at the boundaries of the frames. The task of frame synchronization

is achieved by the receivers, aiming to recover the boundaries of the frames. At the

waveform level, the clocks are also virtual clocks, which tick at every symbol time.

The task of waveform synchronization is also achieved by the receivers, aiming to

obtain the time at which each symbol starts. In this section, we review existing work

that is related to frame synchronization and waveform synchronization, which are

fundamental types of synchronization for point-to-point transmission.1

1See [56,70,113,118,144-146] for other types of synchronization.
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packet

+1.. - -1 -1 +1 ... +1

marker symbol V I
marker frame data symbol

Figure 2-1: A packet consists of two parts: a marker and a frame. The marker
indicates the start of a frame, while the frame contains transmitted messages and
other relevant information, such as the frame lengths and the symbol pattern for
channel estimation.

Frame Synchronization

Digital transmission requires a receiver to regulate its clock in synchronism with

the transmitter clock. Clock synchronism is achieved at the waveform level (by an

acquisition unit and a phase-locked loop), at the symbol level (by a bit synchronizer),

and then at the frame level (by a frame synchronizer) [102] [118, pp. 7-8]. Here,

we describe frame synchronization, which is a task of receivers aiming to recover the

boundary of the frames given the sequence of the received symbols.

Frame synchronization involves the following steps. In the first step, the trans-

mitter injects a fixed-length symbol pattern, called a marker, into the beginning of

each frame2 to form a marker and frame pair, which is known as a packet (Fig. 2-1).3

Packets are then converted from symbols into a waveform and transmitted through

the channel. The receiver detects the arrival of packets by searching for the marker,

removes the markers from the data stream, and recovers the transmitted messages.

Marker detection is the most important step for frame synchronization.

The division of symbols into frames may seem burdensome for the network, but

it serves many purposes. Framing ensures that individual frames can be transmit-

ted independently without requiring scheduling overhead. The ability to transmit

individual frames independently implies that the frequency spectrum can be utilized

intermittently according to its availability, resulting in efficient spectrum utilization.

In the streaming of multimedia data (such as MPEG-4 video [135]), framing ensures

that errors within one frame do not propagate to adjacent frames [98,128]. In a

2 Before injecting markers, the transmitter modifies the sequence of data symbols, if necessary, to
ensure that the data symbols differ from the marker symbols.

3The marker is also known at the receiver.
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(a) fixed-length frames

um f mi f iiiilu

(b) variable-length frames

Figure 2-2: Idle fill characters keep the transmitter and receiver synchronized for
continuous transmission. Here, region "m" indicates a marker, "f' indicates a frame,
and "i" indicates an idle fill character.

II f II M f m f

Figure 2-3: The use of idle fill characters is not allowed in bursty transmission. Hence,
the time between two packets is silent.

network that employs legacy transmission systems, such as asynchronous transfer

mode (ATM) technology [44], framing ensures that frames have a length that can be

handled by the underlying network infrastructure. These examples show that frame

synchronization is important for various applications.

Several approaches can be employed to achieve frame synchronization. One ap-

proach, referred to as a continuous transmission of packets, is to reserve the commu-

nication link between the transmitter and receiver over the entire time of communica-

tion. Frames for continuous transmission may have a fixed length [9,61,76,97] (such

as those in ATM networks) or variable lengths [23-25] (such as those in MPEG-4

video streaming). In both cases, the transmitter sends a special character, known as

an idle fill character, when it has no immediate packet to transmit (Fig. 2-2). The

idle fill characters serve the purpose of keeping the transmitter and receiver synchro-

nized. The use of idle fill characters is possible since the entire link is allocated to

the transmitter and receiver during continuous transmission.

On the other hand, the link may not be allocated to the transmitter and receiver

during the communications. This approach, referred to as bursty packet transmission,

arises in practice, for example, in an 802.11 network and in the Internet. Bursty

transmission provides benefits that include a low transmission overhead and efficient

spectrum utilization. The drawback of bursty transmission is that transmission delay

is difficult to control, which could be problematic for transmission of time-critical
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information. Bursty transmission uses variable frame-lengths, and, unlike continuous

transmission, idle fill characters cannot be used to maintain synchronization between

the transmitter and receiver (see Fig. 2-3). As a result, marker detection strategies

for continuous and bursty transmission are different.

Performance of frame synchronization has been improved through two broad de-

sign approaches. The first approach improves the performance through the design of a

marker with good synchronization properties [4,34,52,53,117]. The second approach

improves the performance through the design of optimal or near-optimal marker-

detection strategies [23-25,76,97,148]. The problem of marker design, valid for both

continuous and bursty transmission schemes, has been explored [4, 34, 52, 53, 117].

Performance of frame synchronization is usually obtained via Monte Carlo simula-

tion [60,62,147].

Waveform Synchronization

Waveform synchronization is a task of digital receivers, aiming to obtain the time at

which each symbol starts, based on the observed, received waveform. Waveform syn-

chronization is a rich subject [48-50,68,79,87,94,121-124,126,127,132,150]. Here, we

will focus on signal acquisition, which is an initial part of waveform synchronization.

Waveform synchronization is an important task for a digital receivers employ-

ing spread-spectrum techniques. Before communication commences, the receiver

must search for a location of sequence phase within a required accuracy. The syn-

chronization process occurs in two stages: the acquisition stage and the tracking

stage [58, 82,83,114]. During the acquisition stage, the receiver coarsely aligns the

sequence of the locally generated reference (LGR) with that of the received signal.

The receiver then enters the tracking stage to finely align the two sequences and main-

tain the synchronization throughout the communication. It has been shown that an

acquisition problem is a hypothesis testing problem [133].

The total number Nunc of phases or cells that the receiver needs to test depends

on the temporal uncertainty range [Tbegin, Tend) of a phase delay and the resolution
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Tres to resolve the phase delay.4 The expression for N.,c is given by

Nunc =- Tend - Tbegin
Tres

which can range from a few cells to several thousand cells, depending on the appli-

cation [85]. Without loss of generality, we index the cells from 1 to Nunc. Cell i,

1 < i < Nunc, corresponds to a hypothesized phase delay in the range [Tbegin + ( -

1)Tres, Tbegin + iTres). An uncertainty index set

Ui = {1, 2, 3, . . ., Nunc} (2.2)

denotes a collection of cells to test. Because the ratio 1/Tres is proportional to the

transmission bandwidth, Nunc can be very large, especially, for a wide bandwidth

transmission system [50]. In that scenario, acquisition of a received signal in a rea-

sonable amount of time is a challenging task.

In a hash environment, such as dense urban or indoor environments, the received

signal often consists of multiple propagation paths, which can be resolved via the use

of wide bandwidth signals [138,139]. The number of correct phases or in-phase cells,

denoted by Nhit, in a dense multipath channel is proportional to the number of resolv-

able paths. Multiple resolvable paths tend to arrive in a cluster in dense multipath

channels [20, 26,27,140-142], giving rise to consecutive in-phase cells, modulo-Nunc,

in the uncertainty index set. The availability of consecutive in-phase cells can be

utilized to aid the design of an acquisition system.

Designing an acquisition system involves two broad design aspects. One deals with

how the decision is made at the detection layer. Examples of the relevant issues at

this layer include combining methods for decision variables, the number of stages in a

multi-dwell detector, a design choice for decision thresholds, and the evaluation of the

detection and false-alarm probabilities. The other aspect deals with the procedure for

finding a correct cell at the search layer. Examples of the relevant issues include the

choice of search strategy (e.g., serial search [85], fully parallel search [94], or hybrid

4Subscript "unc" stands for uncertainty.
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search [116]); and the selection of efficient search order (the sequence in which cells

are tested). In general, the goal of the acquisition receiver is to find a correct sequence

phase as fast as possible.

The performance of the acquisition system is measured typically by the mean

acquisition time (MAT), the average duration required for the receiver to achieve

acquisition. A common method for finding the MAT is to use a flow diagram. A

flow diagram that describes the acquisition procedure in additive white Gaussian

noise (AWGN) channels [86-88] or in frequency non-selective fading channels [51,64,

65, 68, 103, 106,107] simply has one in-phase cell. On the other hand, in multipath

fading channels, the flow diagram has multiple in-phase cells corresponding to the

multiple resolvable paths [59, 66, 67, 111,131,149,150,152].

There are two major approaches to improve the MAT. The first approach improves

the MAT at the detection layer. For example, a receiver may dedicate more resources,

such as correlators, to form a decision variable [95,104,105,111,149,150], use passive

correlators to increase a decision rate [88], use an appropriate decision rule [18,19], or

employ sequential techniques [6,36,37,129,134]. The second approach improves the

MAT at the search layer. For example, a receiver may perform a hybrid search by

using multiple correlators [29-32] or use a special search pattern such as an expanding

zigzag window [15,58,86,136] or a non-consecutive [59,66,67,111,131] serial search.

In a few special cases, the MAT of the conventional serial search (CSS) 5 is shown

to be longer than that of a non-consecutive serial search (see also [59,66,67,111,131]).

To gain some insight into this behavior, let us consider an idealized scenario in the

absence of fading and noise. In this hypothetical scenario (see Fig. 2-4a), a receiver

that skips some cells after each test will reach and find an in-phase cell faster than

does the receiver that uses the CSS. This example indicates that multipath helps the

signal acquisition, and indeed can be generalized to the case in the presence of fading

and noise (see Fig. 2-4b).

Among different serial search techniques, a promising approach to improve the

MAT is to examine signal phases (or cells) according to a specific order, a technique

5The CSS is a search order that tests consecutive cells serially.
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Figure 2-4: A correlator output x(t) contains several resolvable peaks. In an idealized

scenario (a), the output is free from fading and noise. In a realistic scenario (b), the

output is corrupted by fading and noise.

known as a search strategy [121]. Examples of search strategies include the CSS

[59, 124], the fixed-step serial search with a step size N3 (FSS-N) [124], the bit-

reversal search [59], and the uniform randomized search [92,123]. The CSS is the most

commonly-used search strategy, giving the most natural order {1, 2, 3, ... } of cells to

be examined. The FSS-Nj allows a jump size of Nj cells after an examination of each

cell. The bit reversal search examines the cells in the order that approximately mimics

the binary search in computer science. The uniform randomized search examines a

cell randomly so that every cell is equally likely to be examined [92,123]. A search

strategy that yields small MAT is more attractive for the receiver design than a search

strategy that yields large MAT. In general, we want to design the acquisition receiver

using the search strategy that yields the minimum MAT.

The fixed-step serial search and the uniform randomized search are known to

produce the MATs that are close to the optimal MAT, i.e., the minimum MAT

among all possible search strategies. Under a wide range of operating environments,

the fixed-step serial search with the step size Nhit is 'T-optimal (see [121, 124, 126]
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for a precise mathematical statement). Similarly, under a wide range of operating

environments, the uniform randomized search yields the MAT that is at most twice

the MAT of the optimal search strategy [123,125]. These properties make the fixed-

step serial search and the uniform randomized search attractive for the design of

acquisition receivers.

2.2 Existing Models for Time Processes of Clocks

In this section, we review existing models of clocks. First, we give a mathematical

model for oscillators whose output generates a clock signal. Second, we review a

fractional Brownian motion, which has been employed to model noises that exhibit

a memory effect commonly found in clocks. Third, we outline a mathematical model

based on stochastic differential equations for a clock signal.

2.2.1 Clock Modeling

Timing signal of a clock is obtained from the output, S(t), of a pseudo-periodic

oscillator [70]

S(t) = (A + c(t)) sin V(t),

where t is the time of a reference clock, A is the nominal amplitude (a constant), c(t)

is the derivation from the nominal amplitude, and 0(t) is the phase of the oscillator

(a random process). The deviation e(t) is small relative to A and can be ignored in

most timing applications [70 [16, Sec. 5.2]. The phase 0(t) can be extracted from

S(t) by using a phase-locked loop [71] or a tracking loop [72, Chap. 11]. The phase

of the oscillator is a major source of timing error.

The phase 0(t) of a non-ideal oscillator can be written as [46,70] [16, Sec. 5.2]

0(t) = 27rvo qo + t + L q t3 +k W(t) , (2.3)
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where vo is the nominal frequency (a constant); W(t) is a non-stationary noise with

k1(0) = 0; M is a constant representing the highest order of clock drifts; and qo, qi,

... , qm are random variables representing the magnitudes of the phase offset and

clock drifts. The phase for an ideal oscillator is given by $id(t) = 27rvot.

The phase 1(t) are related to the time process and the time deviation.6 The time

process and the time deviation are given by

M

k=1 - 27rvo
M

X(t) = qo + E -tk + X(t) = T(t) - t, (2.5)
kk=1

respectively. The time deviation contains random quantities in 4(t) and can be

modeled by a stochastic integral [46,153]. Through their relationships, $(t), T(t),

and X(t) are equivalent characterizations of the oscillator's phase.

In the expressions for 0(t), T(t), and X(t), the parameter M is usually taken

to be M = 2 for simplicity and for practical purposes [16, Sec. 5.21, giving us

{qo, qi,... , q} -- {qO, qi, q2 }. Random variable qO accounts for the phase error

that arises from an imperfect calibration of the clock at time t = 0. Random variable

qi accounts for the frequency error of the clock. Random variable q2 accounts for

the aging effect on clocks, the fact that clocks tend to run faster over time. Typical

values of q2 are reported in Table 2.1.

Noise W1(t) in the oscillator's phase is usually characterized through a measurement

of its derivative, T(t) A "(). The derivative T(t) can be measured either in thedt

time domain or in the frequency domain. A time-domain measurement provides the

variance, Allan variance [3], and modified Allan variance of T, among other metrics.

A frequency-domain measurement provides the power-spectral density of T(t). Here,

we focus on a frequency-domain approach, which is more relevant to this thesis.

The power spectral density of T(t) is denoted by ST and has been observed to

6 The time process is called "time function" in [16]. The time deviation is called "normalized

phase deviation" in [46] and "phase deviation" in [153].
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Table 2.1: The coefficient for the quadratic term depends on the type of clocks.

Clock q2 (per year)

Quartz oscillator
Crystal Oscillator (XO) > 1 x 10-6
Temperature-Compensated Crystal 5 x 10-7
Oscillator (TCXO)
Miniature single oven Oven-Controlled 2 x 10- 8 -1 X 10-7
Crystal Oscillator (OCXO)
Double oven OCXO 1 X 10-8 - 1 x 10-7
Double oven Boitier a Vieillissement 1 x 10- 9 - 4 x 10-9
Ameliore (BVA)t OCXO

Atomic frequency standard
Rubidium 5 x 10-11 - 5 x 10-10
Caesium-beam 0
Hydrogen Microwave Amplifica- < 101 -- 5 x 10-12
tion by Stimulated Emission of
Radiation (MASER)

The table is adapted from [16, Tables. 6.1-6.3].
t The words mean "packaging for improved aging performance" in

French [16, p. 285].

follow the power law

ST(f) =E hkS f k,
k=--2

for -- fh < f < fh,

and ST (f) = 0 otherwise. Frequency fh is in the range 10-100 kHz for high-

quality clocks (cited from [16, p. 248]). Parameters hk's are constants representing

noise intensities. The powers k = -2, -1,0,1, 2 are chosen empirically by curve

fittings [22, 137] or to agree with a common noise construction, such as a random

walk or a central limit theory [101, p. S307]. Not all types of power-law noise appear

in every clock.

The power-law noises arise from various physical causes, which are documented

in [16, p. 250]:

0 f- 2-noise (random walk frequency modulation): This noise mainly arises from

environmental effects and perturbation to frequency, such as mechanical shocks
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or temperature variations. This noise could be difficult to measure due to a

close proximity to the ideal timing signal.

" f---noise (flicker frequency modulation): The origin of this noise in not well

understood, but it may arise from the physical resonance mechanism of an

active oscillator or from random phenomena that affect the control electronic

devices. This noise is common in high-quality clocks, but it may be hidden by

the fo-noise and f-noise.

" f 0 -noise (white frequency modulation noise): This noise mainly arises from a

slave oscillator that locks into a resonance of another device. This noise is

common in passive-resonator frequency standard, such as caesium-beam and

rubidium clocks.

" f-noise (flicker phase modulation noise): This noise mainly arises from imperfect

electronics, especially in the amplification output and frequency multipliers.

* f 2 -noise (white phase modulation noise): This noise mainly arises from imper-

fect electronics and quantization error in the phase-locked loop. This noise is

common in clocks that use digital control electronics and is often negligible in

high-quality clocks.

Examples of the sample paths for power-law noise appear in Fig. 2-5 (see [16, p. 249]

for the sample path of f 2 -noise). The power-law noise accounts for important type

of noise in clocks.

In addition to power-law noise, another type of noise, called the periodic noise, may

arise in the measurements. The periodic noise is characterized by spikes at discrete

frequencies in Sr. The periodic noise is caused by phenomena including interference

from 50/60 Hz alternate current (AC) power line, seasonable variation of temperature,

and sensitivity of clocks to acoustic or mechanical vibrations [16, Sec. 5.9.2]. The
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Figure 2-5: Sample paths of power-law noise exhibit memory.

periodic noise can be modeled by adding the term below to (2.6):7

Nsk

ST,pr(f) = * [s(f + fi) + sk(f - fA)], for -oc <f <oo,

where sk(-) is a function representing a spike,8 Nsk denotes the number of spikes, #3's

are intensities of spikes, and ±fj's are frequencies at which the spikes occur. Next, we

discuss a fractional Brownian motion, whose derivative can be used to model some of

the power-law noise.

7 For illustration purposes, [16, eq. 5.134] takes Nsk = 1, although the number of spikes is usually
larger than 1 in the measurements [16, Figs. 5.32, 5.35] [137, Fig. 3].

8 Conceptually, sk can be taken to equal the Dirac delta function. In the analysis, 6sk can be
taken to be a bounded, positive, even function with a narrow support and an area underneath of 1.
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2.2.2 Fractional Brownian Motion

Fractional Brownian motion is a stochastic process that exhibits a power-law spectral

density. Fractional Brownian motion can be continuous in time [5,45,73] or discrete in

time [80,101]. Here, we focus on continuous-time fractional Brownian motion, which

is more related to this thesis.

Continuous-time fractional Brownian motion is given by

BH (t) = I(it - s|-1/2 - H-1/2) dBs
F(H + 1/2) (H1)

+ l t It - sH-1/2dBSj
0

where 0 < H < 1, B, is Brownian motion, and F is the gamma function. Fractional

Brownian motion is a generalization of Brownian motion, which can be obtained by

setting H = 1/2. Fractional Brownian motion is a zero-mean Gaussian process, with

the covariance function

RBH (tl s) = E f BH (t)BH(S) VH 2H 2H 2H

where VH = F(1 - 2H)coH. The autocorrelation function depends on both s and t,

implying that BH is not wide-sense stationary.

The derivative of BH gives rise to the notion of the fractional Gaussian noise, a

generalization of the additive white Gaussian noise. The fractional Gaussian noise is

defined to be9 [45, eq. (14)]

,( .i BH (t + 5) - BH (t)
H -+0

Spectra of BH and B', can be obtained through the concept of the Wigner-Ville

spectrum.

9The notion of derivative can be made precise by distribution theory.
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The Wigner-Ville spectrum for a process Z is given by

WZ(t,Wa) - c Rz (t + ,t - e-Jads, (2.8)

where wa = 27rf is an angular frequency, Rz(, -) is the covariance function of Z, and j

is the imaginary unit, i.e., j = V-1. If Z is a stationary process, Wz(t, Wa) is identical

to the power spectral density of Z. The Wigner-Ville spectrum for the derivative Z'

can be obtained by the expression [45, eq. (10)]

2 WZ t, W 1 82
Wz'(t, Wa) = W (t,wa) + 1 Q2WZ(t,Wa). (2.9)

The Wigner-Ville spectra of fractional Brownian motion and fraction Gaussian noise

are given by

1WBH~tWa) - 1 -21 Hcos 2wat) a 2 ~ (2.10)
WB, (t Wa -~ 1 2Hes ala 2H+1

1
WB' (t, Wa) - (2.11)W Pa, Wa a2R-1'

Notice that the second equality does not depend on t.

The Wigner-Ville spectrum is related to measurement outputs from spectral ana-

lyzers. The measurement outputs can be viewed as the average Wigner-Ville spectrum

over a measurement duration T [45, p. 198]:

T 1 (T
Sx(Wa,T) = j W(t, Wa)dt.

The average spectrum for fractional Brownian motion is given by

SBH (WaT)= (-2 1- 2Hsin 
2 WaT 1

S~sa, =1 - 2 2w~aT | Pa|2H+1'

which has the limit of

lim SBH (Wa, T) 1
T-* oc P~al2H+1~
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The average spectrum for the fractional Gaussian noise is given by

SB'(Pa, T) = 1
S aa 2H-1

Fractional Brownian motion and fraction Gaussian noise exhibit power-law spectrum,

as obtained from the spectral analyzers' outputs. Recall that 0 < H < 1, and hence

B' (t) can be used to model the f' power-law noise for -1 < a < 1 by setting

H = (1 - a)/2.

2.2.3 Stochastic Model for Time Deviation

The time deviation X (c.f.(2.5)) can be modeled as a solution to a stochastic differen-

tial equation [46,153]. As it will become apparent shortly, the stochastic differential

equation can account for the maximum drift order of M = 3, two types of power-law

noise (f 0 and f -2), and a type of noise called random walk on frequency drift.

The stochastic differential equations are given by [153, eq. (1)]

dX(1 = (2+) dt + o-1dB)
- ( t + d- t -i -

dX = tX + P2) dt + -2dB

dX -= 3dt +asdB,

with the initial condition B(') = ci; and XM) = X, the time deviation. Here, B(O's are

independent Brownian motions, ui's are noise intensities, and pi's are drift terms.

Random processes B(O's produce three types of clock noise for time deviation X().

The process B(1 ) produces noise on the phase and yields the f 0 power-law noise (white

frequency modulation noise). Process B(2 ) produces noise on the frequency and yields

the f- 2 power-law noise (the random walk on a frequency modulation noise). Process

Bt produces a type of noise known as a random walk on a frequency drift. The

stochastic equations satisfy the Lipschitz and linear-growth conditions [74, Thm. 3.1]

and hence have a unique solution.
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The solution for X(t) X1 (t) is given by [153, eq. 13]:

X(t) = x(0) + y(0)t + 1tt2 + t

+ B-1B + t 2  (t - s)dB 2 + u3 j (t - s)2 dB(, (2.12)

where x(0) = ci is the initial phase, y(O) = P1 + c2 is the initial frequency, and y =

P2 + c3 is the frequency drift. The random processes Bl, fJ(t - s)dB , and f j(t -
s)2dB) represent f 0 -noise, f 2 -noise, and noise on the frequency drift, respectively.

The model can be extended to incorporate the power-law noise, for example by adding

the f-noise and f- 1 -noise, which are modeled by fractional Brownian motion, to the

right side of (2.12).

2.3 First-Passage-Time Problems

A first passage time, or the first time that a random process crosses a boundary, is

of importance in many fields. First passage times are random variables that appear

in biology [17, 41] statistics [39, 151 physics [21, 1121, finance [11, 401, engineering

[12,89], and other fields. We consider two examples to illustrate the diversity and the

applications of the first passage time problems.

Imagine that an investor buys a stock for $1 and plan to sell it for profit as

soon as the stock's price reaches $2. The amount of time until the stock reaches the

desired price is a random variable, depending on the trajectory of the stock's price

(see Fig. 2-6). This amount of time affects the wealth and constitutes a quantity that

the investor wants to understand.

Consider another example, which involves an oscillator and a digital clock. The

oscillator generates a sinusoidal waveform that serves to drive a digital clock: when the

waveform reaches +1 or -1, the digital clock advances a tick. The non-ideal oscillator

generates a noisy, pseudo-sinusoidal waveform, reaching +1 or -1 at random times

(see Fig. 2-7). The amount of time until the waveform reaches +1 or -1 affects

the accuracy of the digital clock and constitutes a quantity that engineers want to
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Figure 2-6: The first time that a stock's price doubles is a random variable.

41

I



C)I

4-D 0

-1-

1.1 4.5

time (sec)

Figure 2-7: Noise corrupts an output of an oscillator, making the output reach a
boundary at random time.

understand.

The above two examples are applications of first-passage-time problems to finance

and engineering. A first-passage-time problem refers to a problem of obtaining a

probabilistic characterization of a random variable called the first passage time. The

probabilistic characterization includes the PDF, the CDF, the moment generating

function (MGF), and the characteristic function. The first passage time is the time

at which a random process first crosses a boundary for the first time. In the stock

example, the first passage time is the time at which the stock's price first reaches $2.

In the oscillator example, the first passage time is the time at which a noisy waveform

first reaches +1 or -1. First passage time problems appear in other disciplines besides

finance and engineering, making them important in application.

First passage time problems occur in many forms depending on the choice of

random processes and boundaries. While we do not attempt to survey the literature,

we give examples of random processes and boundaries that appear in first passage

time problems. The random process might be discrete in time (e.g., [120, p. 3]),
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continuous in time (e.g., [130, p. 60]), one-dimensional (e.g., [96]), multi-dimensional

(e.g., [119, p. 516]), a Brownian motion (e.g., [63, p. 79]), a Brownian motion with

linear drift (e.g., [63, p. 196]), a Brownian motion with quadratic drift (e.g., [55]), or

a general process (e.g., [115]). For a one-dimensional process, the boundary might

consist of one constant barrier (e.g., [38, p. 459]), two constant barriers (e.g., [33]),

one moving barrier (e.g., [77]), or two moving barriers (e.g., [109]). For a multi-

dimensional process, the boundary might be a set in the Euclidean space (e.g., [74,

p. 11]). In the stock example, the random process takes non-negative values; the

boundary is a constant barrier at $2. In the oscillator example, the random process

takes any real value; the boundary consists of two constant barriers at +1 and -1.

The choice of a random process and a boundary is usually motivated by applications

and tractability.

Most first-passage-time problems are difficult to solve. The main difficulty origi-

nates from the dependency across times of random processes. View a random process

as an uncountably infinite set of random variables indexed by time. These random

variables are dependent, often because of the physical constraints on the random pro-

cess. In the stock example, the stock's price is influenced by economic outlook, interest

rates, or other factors that linger, making the stock's prices at different times depen-

dent. In the oscillator example, the waveform rises and falls at certain rates, making

values of the waveform at different times dependent. To solve the first-passage-time

problem, we need to know the trajectory of the random process, a requirement for

the joint probability of values of the random process at all times. Every unsolved first

passage problem involves an infinite set of dependent random variables, a source of

difficulty. With the difficulty, few first-passage-time problems are solved for explicit

solutions.

We survey the problems that have been solved and are similar to the problems in

this thesis. The solutions exist for a Brownian motion and one constant barrier [12,

eqs. (3.2)-(3.3)], [63, p. 88, Thm. 6.19; p. 96, Sec. 8.4], [38, Thm. 12.3.1], [33], [93,

eqs. (7.7)-(7.10)]; a Brownian motion and two constant barriers [33]; a Brownian mo-

tion with linear drift and one constant barrier [63, p. 196, Sec. C], [33], [93, eqs. (7.16)-

43



(7.22)], [110]; a Brownian motion with linear drift and two constant barriers [33,84];

and a Brownian motion with quadratic drift and one constant barrier [55, 100]. In

the remaining part of this section, we summarize the solutions to these problems and

the approaches to solve them.

2.3.1 Brownian motion and one-sided boundary

Let T= inf {t > 0 : Bt + x = j}, where x and r7 are constants. The probability dis-

tributions of 7 are given by

PDF : f(t) = - e 2t

-2rrt 3

CDF : F(t) = 2Q

MGF : E {es} e--x--

where t > 0 and s > 0. Approaches to obtain the above probability distributions in-

clude the reflection principle [38, Thm. 12.3.1] [63, p. 88, Thm. 6.19], a combination of

Laplace transform and differential equation [33], the integral equation [12, eqs. (3.2)-

(3.3)] [93, eqs. (7.7)-(7.10)], random walk [71, Sec. 7-4], and the exponential martin-

gale [63, p. 96, Sec. 8.4].

2.3.2 Brownian motion with linear drift and one-sided bound-

ary

Let 7 = inf {t > 0 : Bt + x + qt = r/}, where x, q, and r are constants. The probability

distributions of T are given by

PDF: f(t) = - - --t )

MGF : E {e~S } - e(7-)-|q-x| q2+2s
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where t > 0 and s > 0. Approaches to obtain the above probability distributions

include the method of image [93, eqs. (7.16)-(7.22)], a combination of Laplace trans-

form and differential equation [33], the Cameron-Martin-Girsanov theorem [63, p. 196,

Sec. C], and the Radon-Nikodym derivative [108, (17.1)] [110].

2.3.3 Brownian motion with quadratic drift and one-sided

boundary

Let T = inf {t > 0 : Bt + x + qt + pt 2 = Iy} where x, q, y and r are constants. Without

loss of generality, we will consider p > 0.10 If x - rj > 0 and q = 0, the probability

distribution of T is given by

Ai (Ak + (2p) 2 13 (X 1/3 - 2
PDF : f(t) = 21/3P2/3 Ai' (Ak) exp A21/3P2/3t - 3203

k=0

for t > 0, where Ai is the Airy function and Ak's are zeros of Ai on the negative

real-line: 0 > A0 > A, > A2 > .... If x - ij < 0, the probability distribution of T is

given by

( (t + 2q )3 -8 3 pj3
PDF: f(t) = exp {4p2(t + 2qp)3 - 8q p - x)

l B(u)A(u - x) - A(u)B(u - x)d
_j Tr[A 2 (u) + B 2 (U)]

where A(u) = Ai (2p 2 /3 u) and B(u) = Bi (2p 2 / 3u). Approaches to obtain the above

probability distributions include the Cameron-Martin-Girsanov theorem and a con-

nection to a Bessel process (among other key steps) [55, Sec. 2]; a combination of

Radon-Nikodym derivative and Feynman-Kac formula (among other key steps) [100,

Sec. 3.2]; and the Cameron-Martin-Girsanov theorem and differential equations [75,

p. 682].

ioThe case of p < 0 can be obtained as an immediate consequence, using the fact that Brownian
motion is symmetric (see Section 2.4.1 for an example). The case of t = 0 appears in Section 2.3.2.
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2.3.4 Brownian motion and two-sided boundary

Let T= inf {t > 0 : Bt + x ( (a, b)}, where x, a, and b are constants such that a <

x < b. The probability distributions of T are given by

k7 0 1.

f(t) - a)2 

F(t) =1-2 (

k=

(-1)k k +

exp I

1) cos
+ 1 E(k

cos (k +
2)

r(2x - b - a)
b -a I

MGF: E {e- S} -

2 (k +{ 2,72t
exp (b -2 a)2

cosh[(b + a - 2x)s/2]

cosh[(b - a) Vs/2]

where t > 0 and s > 0. Approaches to obtain the above probability distributions

include a combination of Laplace transform and differential equation [33].

2.3.5 Brownian motion with linear drift and two-sided bound-

ary

Let T= inf {t > 0 : Bt + x + qt (a, b)}, where x, q, a, and b are constants such that

a < x < b. The probability distribution of T is given by

PDF: f (t) = eq 2
t/2 [eq(a-x)SSb-x,-a (t) + eq(b-x)SSx-a,b-a(t)]

MGF: E {e8} =
eq(a-x) sinh [(b - x) V/2s q2] + eq(b-) sinh [(x - a) /2s + q2]

sinh [(b - a) V/2s + q2

for t > 0 and s > 0, where

ss0 ,(t) = S V - u + 2kv -I u+2kv) 2

k=-oo
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Approaches to obtain the above probability distributions include random walk [84],

a combination of Laplace transform and differential equation [33], and the Cameron-

Martin-Girsanov theorem [13, p. 233].

2.4 Known Methods for Solving First-Passage-Time

Problems

In this section, we survey known methods for solving first-passage-time problems

and provide elementary examples, illustrating applications of these methods. The

methods that we describe here are for continuous-time processes, Markov processes,

and Brownian motion, which are the main random processes in this thesis. We do

not attempt to survey the literature and the list of methods is not exhaustive.

In this section, Bt denotes a standard Brownian motion with respect to a proba-

bility space (Q, F, P) and Ft denotes the o-algebra generated by {B, : 0 < s < t}.

2.4.1 Reflection Principle

Let P. denote a probability measure of Brownian motion with the initial position at

x E R. Brownian motion is a time-homogenous strong Markov process [74, Thm. 9.5,

p. 90]. Hence, for any Borel set A C R, we have

P {BT+s EA| FT}I =PB,{Bs CA}, s > 0. (2.13)

Equation (2.13) can be used to derive the PDF of the first passage time for Brownian

motion and one-sided, constant boundary.

For illustration, we will use the reflection principle to show that the PDF of

T = inf {t > 0 : B(t) = r/
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for y # 0 is given by

1( 2

27wt 3 t > 0. (2.14)

The proof of the PDF is an adaptation of [38, Thm. 12.3.1] [63, Sec. 2.6.A, Thm. 6.19]

and proceeds as follows.

By symmetry of Brownian motion (i.e., -Bt is Brownian motion with respect to

the probability space (Q, F, P)), random variable T, has the same distribution as

random variable T,. Hence, we have for any t > 0,

P {T, t} = P {Tii < t}.

We write

P {Tn t} = P {Ti < t and Bt > l7l} + P {Tjqj < t and Bt < 17|1}

= IP {Bt > 1711} + P (Bt -- 1r/1 <0JT,,, < t P {Tij < t }

= P{Bt > 1r|} + P {Bt

= P{Bt > 1I} + P {Bt

- BT, I< 0 T - P t}P {Tigi t}

- BT1 > 0 Tii 1t} P {Tij i P t}

(Reflection principle and symmetry of Brownian motion)

= P {Bt > 1}11+ P {Ti,7 < t and Bt> ?|}

= 2P {Bt > 7|}1.

For a fixed t > 0, random variable Bt has a normal AN(0, t) distribution, giving us the

CDF

P{Tn < t} = 2 1

where <D is the CDF of normal N(0, 1) random variable. Differentiation of the CDF
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yields the PDF

fT ,(t) = -3-2

where o is the PDF of normal K(O, 1) random variable. Substituting the expression

for (o, we have (2.14).

2.4.2 Exponential Martingale

This method relies on the fact that random process

a2
Z(t) = exp (aBt - t,

is a martingale with respect to {ft}, for a fixed and given constant a E R." An

application of the martingale stopping theory [74, Thm. 3.3, p. 11] can provide the

MGF of the first passage time of Brownian motion and one-sided, constant boundary.

To demonstrate an application of the exponential martingale, we will show that

E {e--To } = e , (2.15)

for s > 0 and Ti E R. The proof proceeds as follows.

Fix a > 0 in the expression of Zt, and suppose that Tj > 0. The case that

rj < 0 will be discussed separately. The random variable T. is an {Ft}-stopping

time [74, Thm. 3.2, p. 11], and hence the martingale stopping theory [74, Thm. 3.3,

p. 11] gives us

E {Z(Tn A t) I Fu} = Z(T A u),

for any 0 < u < t < oc, where x A y denotes the minimum between x and y. Setting

u = 0, taking the expectation on both sides of the above equality, and evaluating

1 The proof is simple, by verifying the definition of martingale: E {Zt |I} = Z, for any 0 <

U < t.
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Z(T, A u) = Zo = 1, we have

E {Z(T A t)} 1.

Taking the limit as t -+ oc gives us

E limexp (aB(At) -- (T At) 1. (2.16)
t- oo 2

On the left side, we have interchanged the expectation and the limit. The interchange

is justified by the dominated convergence theorem, where the dominating term is12

Z(Tn A t) < eaB(-ro e

Now, we evaluate the limit on the left side of (2.16) and have

E exp (a - T 1,

where we have utilized continuity of the exponential function, continuity of the sample

paths of Brownian motion, and the fact that BT, = r7. Setting a = v5 and arranging

the term give us the expression

sE{e--sT} e- , for r 0 and s > 0. (2.17)

Now consider the case that 7 < 0. For any constant r, the probability distribution

of T, equals the probability distribution of T_, because Brownian motion is symmetric

at 0, i.e., -Bt is Brownian motion with respect to the probability space (Q, F, P).

Hence, for q < 0 and s > 0, we have

E{e -T} =E {e -T-}

12Here, we use the fact that a > 0 and 77 > 0 to bound aB(TAt) < a7.
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The right side is given by an application of (2.17), yielding the expression

E {e-"T } = e s for 7 < 0 and s > 0.

Equations (2.17) and (2.18) imply the expression for the MGF in (2.15).

2.4.3 Integral Equation

An integral equation is based on the following theorem [81, Thm. 14.3, Thm. 14.41.

Let g: (0, oc) -+ R be a continuous function such that limt\o g(t) > 0, and let

T = inf {t > 0 : Bt > g(t)}

be the first passage time of Brownian motion over g. Let F denote the CDF of T, i.e.,

F(t) = P {T < t}. Then, the following integral equation (called the Master Equation)

holds:

(2.19)
Q ($1z-)-=

for all z > g(t) where t > 0. Here, Q (-) is the Gaussian Q-function: Q (x) = 1 -<(x).

Furthermore, if g is continuously differentiable on (0, oc), then T has a continuous

PDF f, which satisfies

(2.20)

for all t > 0. The proofs of (2.19) and (2.20) appear in [81, pp. 228-229, pp. 231-233].

See [81, Thm. 14.2] for a more general theorem for a strong Markov process.

We illustrate an application of the approach based on the integral equation. In

particular, we will show that the CDF of T is given by

Pf{T, < t} = (2.21)
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for t > 0 and7 ER.

To obtain the distribution of T,, we set g(t) = 1. Note that limt\o g(t) = I9 > 0

as required. For z = g(t) = |7|, equation (2.19) reads

(j ) Q (0) fT 71(s)ds

for t > 0. Note that Q (0) giving us an identity

Q (j P,{ < t}

Brownian motion is symmetric (i.e., -B, is a Brownian motion with respect to

(Q, F, IP)), implying that P {T1,11 < t} = IP {T < t}. Hence, we have

P (TI) < t},

which simplifies to (2.21).

2.4.4 Method of Darling and Siegert

Method of Darling and Siegert [33] provides the first-passage-time distributions for

time-homogenous Markov processes, such as Brownian motion and Brownian motion

with linear drift. Here, we summarize a result that appears in [33].

Let Xt be a time-homogenous Markov process with continuous sample paths, for

t > 0. Let P(ylz, t) denote the transition probability, i.e.,13

P(YIZ, t) = P {Xr+t < ZI X, Y}, r > 0.

Suppose that P has a derivative,

p(y~z, t) - P(yz, t),

13The right side does not depend on r > 0 because the process is time-homogenous.
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that satisfies the diffusion equation:

A(y) + B2

with initial and boundary conditions p(oolz, t) = p(-oolz, t) = 0 and p(ylz, 0) =

6(y - z) (the Dirac function). Note that A(y) and B(y) can be obtained from the

stochastic differential equation for Xt [78, Thm. 7.3.3]. Let

Ta,b = inf {t > 0 : Xt ( (a, b)}

for fixed constants a and b such that a < Xo = x < b.

equals [33, Thm. 3.2 and Thm. 4.1]

Then, the MGF of Tab

E {e -ab-
v(x)[u(a) - u(b)] - u(x)[v(a) - v(b)]

u(a)v(b) - u(b)v(a)
(2.22)

where u and v are any two linearly independent solutions of the differential equation

1 B2d 2w

2 B ) dy 2

dw
+ A(y) dy - Sw = 0.

We now illustrate an application of the method of Darling and Siegert to Brownian

motion with two-sided constant boundary.

Consider Xt = x + Bt, Brownian motion starting from x. Let

Ta,b = inf {t > 0 : x + Bt ( (a, b)},

where a < x < b. We will show that the MGF of T a,b is given by

cosh[(b + a - 2x) V s/],

cosh[(b - a)v s/2]
s > 0. (2.23)

The solution proceeds as follows. For the process Xt = x + Bt, we have A(y) = 0

and B(y) = 1 [33, Sec. 5a] [93, (5.1)] [78, Ex. 7.3.4]. Hence, the corresponding
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differential equation is

The differential equation has linearly independent solutions u(y) = e-""- and v(y)

eVIXY for s > 0. Hence, (2.22) gives us the MGF in (2.23) after some algebra.

2.4.5 Change of Probability Measure

Let Xt denote a random process with respect to a probability space (Q, F, P). In the

change of probability measure, the initial probability measure P is transformed into

another probability measure fP such that the probability distribution of Xt under a

new measure # equals the probability distribution of Xt under the initial measure P.

Here, Xt is a random process that is simple to analyze under the measure P. A change

in probability measure is often achieved by the Radon-Nikodym derivative [108] or

Cameron-Martin-Girsanov theorem [63, Sec. 3.5].

Here we describe the method based on the Cameron-Martin-Girsanov theorem [63,

Thm 5.1]. Let Bt (B(1) , . . .,B denote an n-dimensional Brownian motion

defined on a probability space (Q, F, P), with an initial position at the origin, i.e.,

P {Bo = 0} = 1 where 0 is an n-dimensional vector of all components equal to zero.

Let Ht = (H() H , .. . , H() be a vector of measurable, adaptive process where each

component satisfies

P T(H( dt < o} 1,

for every 0 < T < oo and i= 1,2,...,n. Let

Z = exp H() dB() - (H()2 ds,
\ o 2= 0/
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and let Bt = (B1 , B2 ,..., B) denote a random process defined by

5 = B - H )ds,

for 0 < t < oo. If Zt is a martingale, then for each fixed T E [0, oc), the process

Bt is an n-dimensional Brownian motion on ( F, Fr, PT), where FT is the o-algebra

generated by {0 < t < T: Bt} and PT is a probability measure defined on FT:

PT(A) = E{1AZT}, A E FT.

From intuition, the Cameron-Martin-Girsanov theorem serves to remove the drift

from the random process. For illustration, we will consider the first-passage-time

problem that involves Brownian motion with linear drift.

Let Xt = qt + Bt denote Brownian motion with linear drift, where q $ 0 is a

constant. Let

r = inf {t > 0 : X- =}

for j $ 0. We want to show that the PDF of T is

fT?(t) xp ( -qt)) (2.24)

for t > 0.

The solution based on the Cameron-Martin-Girsanov theorem proceeds as follows.

The random process 5 = Bt - qt is a Brownian motion under the probability measure

P, which satisfies

P(A) = E{1AZ}, A E Yt,

where Zt = exp (qBt - }q 2t). Let T. = inf {t > 0 : Bt }and take A = { t}.

After an application of the martingale stopping theorem and some simplification
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(see [63, p. 196]), we have

~P{T, < t} = exp qn - Iq2s) P {T7 c ds}.

The left side equals P {T < t} by the Cameron-Martin-Girsanov theorem. The right

side can be simplified using the first-passage-time distribution for Brownian motion

and one-sided boundary: IP {T7 E ds} = exp (-n) ds. Hence, we have the

probability distribution

Pf{r7 E dt} = -exp 2t dtl
v/2wFt 2t '

t > 0. That is, the PDF of r, is given by (2.24).
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Chapter 3

Research Methodology

In this chapter, we describe the research methodology that enables us to solve the first-

passage-time problems and achieve the objectives of this thesis (see Section 1.1 for the

list). We organize this chapter according to the research objectives: one section for

each research objective. In Section 3.1, we describe the methodology for solving the

first-passage-time problems that involve Brownian motion with quadratic drift and a

two-sided, constant boundary. In Section 3.2, we describe the methodology for solving

the first-passage-time problems that involve Brownian motion with polynomial drift

and a two-sided, constant boundary. In Section 3.3, we describe the methodology

for solving the first-passage-time problems that involve multi-dimensional Brownian

motion with polynomial drift and a class of boundaries given by open sets in the

Euclidean space. In Section 3.4, we describe the methodology for solving the first-

passage-time problems that involve discrete-time process with certain correlation and

a one-side, constant boundary. In Section 3.5, we describe the methodology for ap-

plying these first-passage-time solutions to time-aware networks.

3.1 For Brownian Motion with Quadratic Drift

The most important mathematical technique that enables us to solve the problem of

Brownian motion with quadratic drift is transformation methodology. Transformation

relates the original problem to an equivalent one that is easier to solve [69]. A
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transformation methodology has been used to solve difficult problems [124,143] and

is appropriate for our first-passage-time problem.

Here is how we use transformation methodology. To derive the first-passage-time

distribution, we apply five different types of transformations: transformations of the

probability measure, the time, the stochastic integral, the conditional expectation,

and the unconditional expectation. In the order that these transformations appear in

the derivation, first, we transform Brownian motion with quadratic drift into Brown-

ian motion without drift, using the Cameron-Martin-Girsanov theorem. Second, we

transform large time into small time, using the martingale stopping theorem. Third,

we transform the stochastic integration into a Riemann integration with a random

integrand, using the It6 formula. Fourth, we transform the conditional expectation

into the unconditional expectation, using the Laplace transform. Fifth, we transform

the unconditional expectation into a solution of an ordinary differential equation, us-

ing the Feynman-Kac formula. The combination of these transformations yields the

solution of the first-passage-time distribution.

3.2 For Brownian Motion with Polynomial Drift

The methodology for Brownian motion with polynomial drift is similar to the method-

ology for Brownian motion with quadratic drift. Namely, we also use transformation

methodology. Like the case of quadratic drift (Section 3.1), the case of polynomial

drift also involves five types of transformations. The distinction between the cases

occurs at the last two transformations, where we now use another type of integral

transform (instead of the Laplace transform) and need to solve a partial differential

equation (PDE) (instead of an ordinary differential equation). The similarity between

the methods for the quadric drift and polynomial drift is natural, reflecting the fact

that a quadratic function is a special type of a polynomial.

For completeness, we describe the five types of transformation for Brownian mo-

tion with polynomial drift. They are transformations of the probability measure, the

time, the stochastic integral, the conditional expectation, and the unconditional ex-
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pectation. In particular, first, we transform Brownian motion with polynomial drift

into Brownian motion without drift, using the Cameron-Martin-Girsanov theorem.

Second, we transform large time into small time, using the martingale stopping theo-

rem. Third, we transform the stochastic integration into a Riemann integration with

a random integrand, using the lto formula. Fourth, we transform the conditional

expectation into the unconditional expectation, using the integration, which is in-

vertible. Fifth, we transform the unconditional expectation into a solution of a PDE,

using the Feynman-Kac formula. The combination of these five transformations yields

the solution of the first-passage-time distribution.

3.3 For Multi-Dimensional Brownian Motion with

Polynomial Drift

The methodology for multi-dimensional Brownian motion with polynomial drift is

reduction and ordered statistics. In particular, we reduce the problem in multiple

dimensions into several problems in one dimension and then apply rules of probability

usually found in ordered statistics. The reduction simplifies the analysis and enables

us to solve the original problem that consists of hundreds of dimensions.

Here is how we use the reduction and ordered statistics. We treat the n-dimensional

process as n one-dimensional processes, exploiting independence among the random

components of the n-dimensional process. Then, we obtain an upper bound and a

lower bound for the CDF of the first passage time for the n-dimensional process us-

ing these approaches. For the lower bound, we relate the first passage time of the

multi-dimensional process to an ordered statistic. The ordered statistics are the first

passage times, placed in an increasing order, of the n one-dimensional random pro-

cesses. We derive the probability distributions of the ordered statistics and obtain

the lower bound. For the upper bound, we relate the first passage time of the multi-

dimensional process to an appropriate event. Then, we evaluate the probability of

this event and obtain the upper bound. The strength of our methodology is that
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the upper bound and the lower bound are easy to obtain and valid for a large class

of boundaries. For certain boundaries, we verify using rules of probability that the

lower bound equal the exact probability distribution of the first-passage-time time.

The combination of a reduction and ordered statistics give us a first-passage-time

distribution.

3.4 For a Discrete-Time Process With Certain Cor-

relations

The first-passage-time problem for a discrete-time process with certain corrections

is motivated by frame synchronization. In particular, we want to characterize the

duration to achieve frame synchronization using the framework of first passage time.

The methodology for characterizing the duration to achieve frame synchronization is

to decompose this duration into a random sum. Then we apply rules of probability and

renewal theory to obtain the probability distribution of the random sum. Our method

yields the expected time and the CDF of duration to achieve frame synchronization.

Here is how we use decomposition. We write the expected time and the CDF of

duration to achieve frame synchronization as functions of a few basic terms. These

basic terms are probabilities and conditional probabilities of certain first passage

times for discrete-time processes and a one-sided, constant boundary. We derive

explicit expressions for the probabilities and conditional probabilities using rules of

probability (such as Bayes' theorem, the law of total probability, the law of large

number), stopping time, and renewal theory. The expressions for the basic terms

give us the expressions for the expected value and the CDF of time to correct frame

synchronization.

3.5 For Applications to Time-Aware Networks

The methodology is to express key performance metrics in time-aware networks as

first passage times. In particular, we consider three aspects of synchronization in time-
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aware network: synchronization of two clocks, synchronization of a network of clocks,

and synchronization of frames. The methodology for each aspect of synchronization

is as follows.

For the synchronization of two clocks, we apply the frameworks for Brownian

motion with quadratic drift and Brownian motion with polynomial drift. Brownian

motion with drift represents the time error between the two clocks. The first time that

Brownian motion with drift exits the boundary is the time that the two clocks need

to be calibrated. We propose two performance measures for the calibration time: the

average and the outage. We obtain the average and the outage of the calibration time

using the first-passage-time distributions derived for Brownian motion with quadratic

and polynomial drifts. Then, we plot the average and the outage as a function of key

parameters such as severity of clock noise and the maximum allowable time error.

The plots give insight into how often clocks need to be calibrated.

For synchronization of a network of clocks, we apply the framework for multi-

dimensional Brownian motion with polynomial drift. The number of clocks equals

the number of components of the multi-dimensional process. Each component of the

multi-dimensional process represents the time error between each clock and a reference

clock. The first time that multi-dimensional Brownian motion with polynomial drift

exits a boundary is the time that a given number of clocks are simultaneously out of

sync. At the first passage time, the network needs to be calibrated. We propose two

performance measures for the network calibration time: the average and the outage.

We obtain the exact expression (when available), the lower bound, and an upper

bound for the average and the outage of the calibration time, using the first-passage-

time distributions derived for multi-dimensional Brownian motion with quadratic and

polynomial drifts. Then we plot the exact expression, the lower bound, and the upper

bound as a function of key parameters such as severity of clock noise and the number

of clocks in the network. The plots give insight into how often the network needs to

be calibrated.

In the third setting, we apply the framework for discrete-time process to frame

synchronization. The random process represents the decision variable at each discrete
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time. The first passage time represents the time at which a receiver correctly acquires

a frame (or a packet). We propose two performance measures to characterize time to

correct frame synchronization: the average and the probability of correct acquisition

within a given duration. Then we plot the two metrics as functions of key parameters

such as the signal to noise ratio (SNR). These plots give insight into the duration

until a node correctly acquires a packet.
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Chapter 4

Research Results

In this chapter, we describe the research results that address the objectives of this

thesis (see Section 1.1 for the list). We organize this chapter according to the research

objectives: one section for each research objective. In Section 4.1, we solve first-

passage-time problems that involve Brownian motion with quadratic drift and a two-

sided, constant boundary. In Section 4.2, we solve first-passage-time problems that

involve Brownian motion with polynomial drift and a two-sided, constant boundary.

In Section 4.3, we solve first-passage-time problems that involve multi-dimensional

Brownian motion with polynomial drift and a class of boundaries given by open sets in

the Euclidean space. In Section 4.4, we solve first-passage-time problems that involve

discrete-time process with certain correlation and a one-sided, constant boundary. In

Section 3.5, we apply these first-passage-time solutions to time-aware networks.

4.1 Brownian Motion with Quadratic Drift

In this section, we solve first-passage-time problems involving Brownian motion with

quadratic drift. The goal is to obtain the probability distribution of the first time

that Brownian motion with quadratic drift crosses a two-sided boundary. Our main

contributions from this section are

* a methodology involving transformation techniques to solve first-passage-time

problems;
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value

a quadratic drift, h(t) a sample path, Xt(w)

b

0
Tab (W) t

a

Figure 4-1: A sample path of Brownian motion with quadratic drift takes a value
outside an open set (a, b) for the first time at time Ta,b(W).

" an explicit expression of the PDF of the first time that Brownian motion with

quadratic drift crosses a boundary consisting of two constants; and

" a PDF of a first passage time for scaled Brownian motion starting from an

arbitrary position.

The solution to first-passage-time distribution has applications to clock synchroniza-

tion.

This section is organized as follows. In Section 4.1.1, we state the first-passage-

time problem that we aim to solve. In Section 4.1.2, we provide the solution to the

first-passage-time distribution. In Section 4.1.3, we discuss important aspects and

the consequences of our solution. In Section 4.1.4, we provide elementary examples

demonstrating applications of our solution. In Section 4.1.5, we prove the main

theorems that lead to the solution of the first-passage-time distribution.

4.1.1 Problem Statement

Let Bt denote a standard Brownian motion defined on a probability space (Q, F, P).

Let Xt denote a random process

Xt = Bt + h(t), t '> 0,
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where h(t) = qt + pt 2 for constant /y > 0 (without loss of generality) and constant

q E R. Let T,b denote the first time that Xt crosses a boundary consisting of two

constants at a and b:

Ta,b = inf t > 0 : Xt V (a, b)},

for finite numbers a < 0 < b. See Fig. 4-1 for an illustration. We want to obtain the

probability distribution of ra,b.

4.1.2 Solution to the First-Passage-Time Distribution

The PDF of T a,O is a sum of two terms:

(4.1)fab (t) = fTabXab (t, a) + f a,b'XTab (t, b),

where

fra,x b(t, a) = "- - IIt3 fa(t),

frab,,x~a (t, b) = ebq+[2ip(b-a)- q ]t-tqt2 _ 2 t f(t),

(4.2)

(4.3)

for almost every t > 0 (with respect to the Lebesgue measure). On the left side,

fTabX'ab denotes a joint PDF of two random variables: the first passage time Ta,b and

the barrier XTa b at which the random process first crosses at time Ta,b. On the right
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2
Bi(x)

Figure 4-2: Airy functions Ai(x) and Bi(x)
differential equation w"(x) - xw(x) = 0.

are linearly independent solutions of a

side, fa and fb are given in terms of Laplace transforms:

e-j fa(t)dt

j e-.tf (t)dt =

b
b-a'

sinh[bv 2]
sinh[(b-a)V2-]j

Ai(y)Bi(3b+-y)-Ai(,3b+-y)Bi(y)
Ai(#a+-y)Bi(#b+^/)-Ai(#3b+-y)Bi(,3a+-))

- a
b-a'7

sinh[-avr] ,

sih[(b-a)+--)

Ai(#a+-y)Bi(,y)-Ai(-y)Bi(#3a+-y)
Ai(Oa+-y)Bi(#3b+-y)-Ai(#b+-y)Bi(#a+7)

P1 0, Os =0,

p = 0, S > 0,

->0 s > 0,

P = 0, s = 0,

p= 0, s > 0,

and Ai and Bi are Airy functions (see Fig. 4-2) [2, Sec. 10.4.1, p. 446], (4p)

and 'y(s) -2iia)
t4)23

4.1.3 Important Aspects of the Solution and the Consequences

We discuss the important aspects of the solution and consider the other problems

that can be solved as a consequence of our work.
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Important Aspects of the Solution

We make the following remarks about the solution. First, for p = 0, the PDF in (4.1)

reduces to a known result [14, p. 309, 3.0.1] for Brownian motion with linear drift.

Second, fa and fb can be determined by numerically inverting the Laplace transforms

(for example, see [1, Sec. 2]). Third, as it will be apparently shortly, to derive the

first-passage-time distribution, we will evaluate a conditional expectation

E{1{ BTb e-fab Bh"(u)du Ta,b = t} (4.6)

for each t > 0 and each X E {a, b}. In the conditioning, Ta,b is the first time that a

standard Brownian motion exits from an interval (a, b):

Ta,b = inf {t > 0 : Bt V (a, b)}. (4.7)

The conditional expectation is difficult to evaluate directly, since conditioning on

{Ta,b = t} alters the measure of process B,. This difficulty is alleviated in our

solution by finding the Laplace transform of

E 1 _ e- ff"b B1 h"(u)du Ta,b - t}fTab,(t),

where fTa,b is the PDF of Tab, i.e., fTb(t)dt = IP {Ta,b E dt}. See Step 4 of the proof

in Section 4.1.5.

A Process not Starting from Zero with a Scaled Variance

The problem statement in Section 4.1.1 restricts Xt to start from zero, y to be positive,

and the variance of Xt to be that of the Brownian motion. In this section, we allow

the random process to start from an arbitrary position, the value of P to be negative,

and the coefficient of Bt to be any value. This variation to the first-passage-time

problem can be reduced to our original problem using the method described here.

The problem statement that we now want to solve is as follows. Let Yt denote a
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random process

Yt = o-Bt + g(t), t > 0,

where c- is a non-zero constant and g(t) = C'+-qt+yt2 for constants p, e, and q, where

1 / 0. The case of j = 0 is well-known and needs no consideration (see literature

review, Section 2.3.5). Let iay,by denote the first time that Yt crosses a boundary

consisting of two constants at ay and by:

Tayby =inf t 0: Yt (ay, by)

for finite numbers ay < g(0) < by. We want to obtain the probability distribution of

Tay,by-

This first passage time problem can be reduced to the problem in the previous

section by using the following observations. First, -Bt is a standard Brownian motion

with respect to the probability space (Q, F, P). Hence the sign of o- does not affect

the distribution of fay,by. Second, the value of -ay,by is not affected by scaling or

shifting of a random process and the barriers along the y-axis. Hence we can scale

and shift the random process and the barriers together to produce a Brownian motion

with quadratic drift that begins at 0. These two observations provide a geometric

interpretation of our solution.

A solution to the first passage time problem is as follows. The PDF of iay,by

equals

weayby(t) f faaybyYayby (tay) + ftoYtheLbsube (t,mby),

where, for almost t > 0 (with respect to the Lebesgue measure), the joint PDF
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flay, by yYay,by equals

f"aybyYYayby (t, ay)

A ( a-c b-c t)>0

B+ - -4 - t)-6+ <-0

ftayby~Y'ab (t, b,)

B( a-c b-c t) >

A(-b+c -6+6 -- p
la l11, 0 I- t I A<0.

Here, A and B are the right side of (4.2) and (4.3), respectively, viewing as functions

of (a, b, q, i, t). The proof is based on a scale and a shift of the random process and

a symmetry in Brownian motion. The proof is omitted for brevity.

4.1.4 Elementary Examples

As an example, we consider a random process Xt with quadratic drift h(t) = qt + pit 2

where q = 1 and y = and consider the boundary at a = -1 and b = 2. We obtain10

the PDF of the first passage time using the method described in Section 4.1.2. The

PDF is shown in Fig. 4-3 along with the joint PDF.

From the figure, the joint PDF, fa,,,XT , matches intuition. For each t > 0 and

x E {a, b}, recall that fTbXa, b(t, x) is the probability density that the random process

exits the boundary for the first time at time t and the exiting boundary is x. When

t is near zero, f-rb,XTb (t, a) is larger than f'a,bX'ab (t, b). This trend arises because

the barrier at a = -1 is closer to zero than the barrier at b = 2. As a consequence,

the random process is more likely to exit from a than from b at small t when the

drift approximates zero. From the figure when t is large, frabXab (t, b) is greater than

fTabXTab (t, a). This trend arises because the drift moves the random process away

from barrier a. As a consequence, the random process is more likely to exit from b

than from a at large t. Adding the joint PDFs together gives us the PDF, which

numerically integrates to one as we expect.
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h(t) t±+ _t 2

2
0

--1

value a
0.59 PDF
0.55 -

joint at b

0.14 -

joint at a

0
0.29 0.961.01 5 t

Figure 4-3: The PDF, the joint PDF evaluated at a -1, and the joint PDF
evaluated at b = 2 match intuition.

4.1.5 Proofs of the Key Theorems

Process Xt is continuous and hence exits the interval (a, b) either from a or from b,

giving the equality in (4.1). It remains to derive (4.2) and (4.3).

The derivation of (4.2) and (4.3) employs the following ideas. First, we transform

the process Xt into a standard Brownian motion using the Cameron-Martin-Girsanov

theorem. Next, we replace a stochastic integration with a Riemann integration us-

ing It6's formula or the stochastic integration-by-part formula. We then apply the

martingale stopping theorem. Finally, we relate the conditional expectation in (4.6)

to a differential equation using a Laplace transform and Feynman-Kac formula. The

derivation is divided into several steps below.

Step 1: Transformation of measure

Let Ft denote the a-algebra generated by {B, : 0 < u < t}, and Fo, denote the

a-algebra generated by {Bu : 0 < u}. The Cameron-Martin-Girsanov theorem [63,
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Thm. 5.1, p. 191] implies that the process §t, for

§- = Bt - j h'(u)du = Bt - h(t), (4.8)

is a standard Brownian motion on (Q, .Foo, I), where l is a unique probability measure

satisfying [63, Cor. 5.2, p. 192]

IP(E) = E {1Zt}, for every t > 0 and every E E t. (4.9)

On the right side, E {-} is the expectation with respect to IP, and Zt equals

Zt efo h'(u)dBu -} f Ih'(u)|2 du (4.10)

= e h'(t) Bt - f0 B,, h "(u) du- 1 f0 Ilh'(u)12 du.( 1 )

The second equality for Zt follows from It6's formula or the stochastic integration-by-

part formula [78, Thm. 4.1.5, p. 46]. Note from (4.10) that Zt is an martingale (with

respect to {Ft}) by a straightforward verification of the martingale definition.

Under measure IP, process Xt is, by definition, a standard Brownian motion plus

drift h(t). Under measure §, process §t + h(t), or equivalently Bt (see (4.8)), is a

standard Brownian motion plus drift h(t). This parallelism between Xt and Bt implies

the following:

P {ra,b < t and Xab a} = P{Tab < t and BT =a, and (4.12)

IP {Ta,b < t and XTa,b = b} = P{ITa,b t and BTab = b}. (4.13)

The right side can be written in terms of the expectations with respect to P, using

relationship (4.9) provided by the Cameron-Martin-Girsanov theorem.

Step 2: Derivation of IP {Ta,b E dt and Xb, = a}
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Equation (4.12), together with (4.9) for E = {Ta,b < t and BTab a}, becomes

P (7{a,b t and Xb = a} = E 1 {Ta,,bt and BT, a Z

Let x A y denote the minimum between x and y. The right side simplifies to

P {Ta,b < t and Xaab a} E {1{Ta,bat and BTaba} E {ZE T } }
E 1{Ta,bat and BTab=a} ZtATa,b

(C) 1E {1{Tabt and BTab =a} ZTa }
where (a) follows from an iterated expectation and the indicator random variable

being FtATa -measurable, (b) follows from martingale stopping theorem [74, Thm. 3.3,

p. 11], applied to a finite stopping time (t A Ta,b) < t < oc, and (c) follows from the

equality (t A Ta,b) = Ta,b on the set {Tab < t and BTab = a}.

Substitution of ZTa b in (4.11) into the expectation gives us

P {Ta, t and XTa , = a}

E E f {1{Ta.bt and BTa,b=ae h( ab B2h"(u)du-- f a, lh'(u) 2du Ta,b

E{ 1 (T Q bt}eh'(T,6)a- ~fah(U|a2duE{1 - f Tab Buh"(u)du Ta,b

where the conditioning is under o(Ta,b), the --algebra generated by random variable

Ta,b. Equation (a) follows from an iterated expectation. Equation (b) follows from

the random variables outside the conditional expectation being o(Ta,b)-measurable.

Random variables inside the expectation are functions of Ta,b [35, p. 20] [38, p. 340].

Hence, the expectation can be written as an integration involving the PDF of Ta,b:

P {Ta,b < t and Xra b =a} j eah'(v)-- f; h'(u)| 2du+cv fa(v)dA,
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fa(v) = E{{BTTba=a} e (Bah"(u)+c)du Tab = V IfT,6b(V)

and c = 2plal. Constant c guarantees that the integrand in the expression of fa is

non-negative:

Buh"(u) + c = 2pB - 2pa > 0,

Step 3: Derivation of P {Ta,b E dt and Xab

for every 0 < u < Ta,b-

b}

Starting from (4.13), using the relationship (4.9) for E = {Tab < t and BTa,b -

and repeating the approach in the previous step, we have (4.3):

where

P {Tab < t and Xab = b -1j ebh'(v) A f2" |h'(u)|2du

fb(v) = E{1 Tab=b e-0 (Bh"(u)+c)du Ta,b - V

i-cv fb(v)dv,

} fTa, *(V

It remains to show that fa(t) and fb(t) satisfy (4.4) and (4.5).

Step 4: Laplace transforms of fa and fb

Taking the Laplace transforms of fa and fb gives us

J00 Ej 1
BT =a} e (Bh"(u)+c+s)dse~stfa(t)dt = Ta,b - t } fTab (t)dt

E 1
{BTb =a Ta(Bh"(u)+c+s)du (4.14)

and

e-tfb(t)dt = E {1BTabb} e- 0 "'(Bh"(u)+c+s)du , (4.15)

where s denotes the variable for Laplace transforms. Next, we evaluate the right sides
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of (4.14) and (4.15).

Step 5: Evaluation of the expectation in (4.14)

Fix s > 0. By the Feynman-Kac formula [74, Thm. 8.1, p. 79], the expectation in

(4.14) equals y(0), where y is a unique solution for the ordinary differential equation

1,
Iy"(x) - (2,x + c + s)y(x) = 0, for a < x < b,

with boundary conditions

y(a) = 1 and y(b) = 0.

The differential equation has a unique solution due to our choices of c and s that

make the integrand, Bah"(u) + c + s, non-negative [74, pp. 78-79]. The differential

equation can be solved using standard techniques [28, Thm. 1, p. 51; Sec. 7, p. 126] [2,

Sec. 10.4.1] and yields the solution

b a' 0 and s = 0,

y = sinh[(b-a) v2s yp 0 and s > 0
sih[(b-a)vis ]'

Ai(#z+,y)Bi(#b+-y)--Ai(#b+-y)Bi(#x+7() 
> 0,Ai(0a+,y)Bi(#b+-y)-Ai(#b+-y)Bi(Oa+-7

where 'y and # are defined in Section 4.1.2. Evaluation of y(0) gives (4.4).

Step 6: Evaluation of the expectation in (4.15)

Fix s > 0. The Feynman-Kac formula implies that the expectation in (4.15)

equals z(0), where z is a unique solution for the ordinary differential equation

1,
--z"(x) - (2px + c + s)z(x) = 0,2

with boundary conditions

for a < x < b,

z(a) = 0 and z(b) = 1.
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The differential equation has the solution

b-azp = 0 and s = 0,

Z (X) = sinh[(x-a)v/_2s8 ] rds>0
sinh[(b-a)v'] '

Ai(Oa+y) Bi (#x+y) --Ai (ox+-y)Bi(#3a+-) > 0.
Ai(#a+-y)Bi(#b+-y)-Ai(#b+-y)Bi(#a+-y)

Evaluation of z(0) gives (4.5). The proof is complete.

4.2 Brownian Motion with Polynomial Drift of High

Orders

In this section, we solve first-passage-time problems involving Brownian motion with

polynomial drift. The goal is to obtain the probability distribution of the first time

that Brownian motion with polynomial drift crosses a two-sided boundary. Our main

contributions from this section are

" a methodology involving transformation techniques to solve first-passage-time

problems;

" an expression of the PDF of the first time that Brownian motion with polyno-

mial drift crosses a boundary consisting of two constants;

" an extension of the first- passage-t ime distribution to a large class of drifts that

include functions with continuous third derivatives; and

" solution to the first-passage-time problems that involve one constant boundary

and a moving boundary.

The solution to first-passage-time distribution has applications to clock synchroniza-

tion.

This section is organized as follows. In Section 4.2.1, we state the first-passage-

time problem that we aim to solve. In Section 4.2.2, we provide the solution to the
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first-passage-time distribution. In Section 4.2.3, we discuss important aspects and

the consequences of our solution. In Section 4.2.4, we provide elementary examples

demonstrating applications of our solution. In Section 4.2.5, we prove the main

theorems that lead to the solution of the first-passage-time distribution.

4.2.1 Problem Statement

Let Bt denote a standard Brownian motion defined on a probability space (Q, .F, IP).

Let Xt denote a Brownian motion with drift h(t):

Xt = Bt + X(t), t > 0,

where h is a polynomial with h(O) = 0, i.e., X(t) = Zi cit' for a finite m > 1 and

constants ci, c2 , . . , Cm.1 We want to obtain the probability distribution of ~a,b, where

Ta,b is the first time that Xt crosses a boundary consisting of two constants at a and

b:

Ta,b -- inf {t >0 : t (a, b)}

for finite constants a < h(0) = 0 < b.

4.2.2 Solution to the First-Passage-Time Distribution

In this section, we summarize our solution to the first-passage-time distribution. A

proof for the solution is postponed until Section 4.2.5. A solution to drifts that are

more general than polynomials will be discussed later (see "Solution to a class of

accelerating drifts" on page 81).

The PDF of the first passage time ,ab equals a sum of two terms:

f,b(t) = f abT(t, + f b (t, b), (4.16)

1Later (see (4.29)), we will remove the condition h(O) = 0 and allow the random process to start
from an arbitrary position.
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for almost every t > 0 with respect to the Lebesgue measure. The notation f

denotes the joint PDF of two random variables: the first passage time T",b, and the

barrier Xya at which the random process crosses at time Ta,b. These terms equal

fb (t, a) = eI'(t) M '(u)Pad+t gg() (4.17)

f'abTab (t, b) - ebh'(t)-K f I'(u)Pad+Et g((t), (4.18)

where 2 is a constant, ga and gb are functions relating to conditional expectations,

and prime (') denotes the derivative. The constant i and the functions ga and gb are

obtained as follows.

The constant Z depends on the supremum norm sup> 0 |h"(s)|. For a finite supre-

mum norm, E is chosen to be any constant such that

Z > max -binfh"(s), -a sup h"(s) , (finite supremum norm). (4.19)
s>0 s>0

For an infinite supremum norm, a is chosen to be any constant such that

> max -b inf h"(s), -a sup N"(s) , (infinite supremum norm), (4.20)
0<S<tmax 0<S<tmax

where tmax is any positive number. For both cases of the supremum norm, a is finite

and non-negative.

The functions ga(t) and gb(t) are obtained from PDEs and limit operations. Both

functions depend on the supremum norm sup> 0 Ih"(s) . For a finite supremum norm,

ga and g are defined to be functions on t E (0, oc). For an infinite supremum norm,

ga and gb are defined to be functions on t E (0, tmax]-

Function ga is obtained as follows. Fix t E (0, oc) or t E (0, tmax], depending on

the domain of ga. The value of ga(t) equals

ga(t) = lim y(0, 0, t,), (4.21)
,'\0
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where y(x, s, t, E), for 0 < E < b - a, satisfies the PDE

s y(x, s) 2 y(, s) - (xh"(t) + -)y(x, s) = 0, a < x < b, 0 < s < t, (4.22)

and boundary conditions

y(a, s) = 1, 0 < s < t (4.23a)

y(b, s) = 0, 0 < s < t (4.23b)

y(x, t) = <(x) = max{1 - (x - a)/, 0}, a K x K b. (4.23c)

In the PDE and the boundary conditions, we suppress variables t and E for notational

simplicity.

Function g is obtained by a similar method. Fix t in the domain of g. The value

of gb(t) equals

gb(t) = lim z(0, 0, t, E). (4.24)

Function z(z, s, t, E), for 0 < E < b- a, satisfies the same PDE in (4.22) where y's are

replaced by z's but the boundary conditions now become

z(a, s) = 0, 0 < s < t (4.25a)

z(b, s) = 1, 0 < s < t (4.25b)

z(x, t) = @(x) = max{1 -+ (x - b)/E, 0}, a K x K b. (4.25c)

The critical step on obtaining the first-passage-time distribution reduces to solv-

ing the initial-boundary value problems (IBVPs), i.e., PDEs with given boundary

conditions. It turns out that the IBVPs that appear in (4.22), (4.23) and (4.25) have

unique solutions y and z, involve parabolic PDEs, and can be solved numerically by

a mathematical software package.
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4.2.3 Important Aspects of the Solution and the Consequences

We discuss the IBVPs that appear in the previous section; the methods to select j,

tmax, and E; and the consequences of our solution described in Section 4.2.2.

Initial-boundary Value Problems

The IBVPs that appear in our solution are difficult to solve due to the boundary

conditions. To illustrate the difficulty, we temporarily ignore the boundary condi-

tions and consider the PDE in (4.22). This PDE is a Schr6dinger equation and has a

solution

1 x - h(s)] 2 1s(U
w (x, s) exp { + xh'(s) - I'(u)2 du - as}. (4.26)

Vd27 2s 2 0

The solution is again obtained from a transformation methodology: transform the

PDE into a heat-conduction equation, following the method of [42] [57, p. 9]. Now,

consider the PDE together with the boundary conditions. The method that yields

the solution to (4.26) will not solve the IBVP. The transformation of the PDE

also transforms the boundary conditions into complicated forms. Furthermore, the

method described in [42] [57, p. 9] does not guarantee the most general form of

solutions. In such cases, the IBVP can be solved numerically.

Values of E, E, 9a, and 9b

To obtain the first-passage-time distribution, we select ~ and E and solve the PDEs

numerically and obtain ga, gb, and their derivatives. We then use (4.16)-(4.18) to

produce the PDF at a given time t. The PDF can be obtained for each t E (0, oc) or

t E (0, tmax] depending on the domain of ga and gb.

The value of tmax is arbitrary. Note, however, that a large value of tmax produces a

large value of a since the right side of (4.20) is an increasing function of tmax. A large

E results in a large exponential ea (see the expression of PDF in (4.17) and (4.18)),

which requires significant precision in the evaluation of g'(t) and gj(t). To reduce
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the need for numerical precision, we select the smallest possible tmax, for example,

one that just gives us P {~a,b < tmax} 1.

We now turn our discussion to . It will turn out that parameter j serves to

shift an exponent so that the expectations that appear later in the proof (Step 8 of

Section 4.2.5) are bounded. Parameter j depends on the infimum and the supremum

of I" (see (4.19) and (4.20)). If the infimum and supremum can be evaluated explicitly,

we set Fto equal the right side of (4.19) or (4.20). Otherwise, we bound the supremum

from above and the infimum from below, and set j to a value that is greater than

or equal to the right side of (4.19) or (4.20). Similar to tmax, parameter ~ should be

chosen to be as small as possible to reduce the need for numerical precision.

Another consideration in obtaining ga and g is the evaluations of the limits in

(4.21) and (4.24). To evaluate the limits, we will need to select the value of E. Fix t in

the domain of g, and g. To evaluate ga(t), we set E in (4.21) to equal a constant Ea (to

be determined shortly), solve the IBVP for y, and approximate ga(t) by y(0, 0, t, Ea).

Similarly, to evaluate g(t), we set E in (4.21) to equal a constant Eb (to be determined

shortly), solve the IBVP for z, and approximate gb(t) by z(0, 0, t, Eb). The values of

Ea and Eb that we should select depend on the amount of error that we can accept

from approximating the limit by the numerical value. In particular, if

0< Ea <min b-a,kIad } and (4.27a)
1 + dvZ7e

d 2e

2<Ee <Min b-a, (4.27b)
1 + d/2-7r '

then the approximation error is at most d:

Iy(0, 0, t, Ea) - ga(t)I < d and (4.28a)

Iy(0, 0, t, Eb) - gb(t)| < d. (4.28b)

A proof that (4.27a) implies (4.28a) and that (4.27b) implies (4.28b) appears in

Section 4.2.5. With a suitable choice for Ca and eb, we can evaluate ga(t) and gb(t)
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at a desired level of accuracy.

Solution to a class of accelerating drifts

By inspecting the proof in Section 4.2.5, we see that the solution for the first-passage-

time distribution given in Section 4.2.2 is valid for other drifts besides the polyno-

mials. In this section, we will describe the class of drifts whose first-passage-time

distributions are also given by Section 4.2.2.

This class of drifts will be referred to as the class of accelerating drifts, due to a

requirement on the second derivatives. In particular, we define the class of accelerating

drifts to be the set of functions, h: [0, oo) -+ R, with the following property: for each

T > 0, there exist M > 0 and a > 0 such that

xh"(s) - yh"(t) < M(|x - yl +is -t ,

for every x, y E [a, b] and every s, t E [0, T]. In other words, the mapping (x, t) -

xh"(t) satisfies the H6lder condition with order a, for (x, t) E [a, b] x [0, T]. The

probability distribution of

Ta,b - inf{t >0: Xt (a, b)},

where h(0) = 0 and h is an accelerating drift, is also given by Section 4.2.2.

The class of accelerating drifts is a large class of functions. Examples of the

functions in this class include h(t) = 0 (no drift); N(t) = 4t (linear drift); h(t) =

qt + Pt 2 (quadratic drift); h(t) = t3 (cubic drift); h(t) sin(wt) (sinusoidal drift);

h(t) = ln(1I+t) (logarithmic drift); h(t) = 1-e- (exponentially decaying drift); h(t)

1 - e-n for n = 1, 2, 3,... (super-exponentially decaying drift); N(t) = v/1 + t - 1

(square root drift); h(t) = (1 + t)" - 1 for -oc < v < 2 (sub-quadratic drift); h(t) =

tne-t for n = 1, 2, 3, ... (a product of polynomial and exponentially decaying drift);

any h(t) that has a continuous third-derivative on t E [0, oo); a scalar multiplication

of any of these examples; and a linear combination of these examples. A solution
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in Section 4.2.2 solves a large class of drifts and a large class of first-passage-time

problems.

A Random Process not Starting from Zero with a Scaled Variance

The problem statement in Section 4.2.1 restricts Xt to start from 0 and the coefficient

of Bt to be 1. In this section, we allow the random process to start from an arbitrary

position and the coefficient of Bt to be any value. This variation to the first-passage-

time problem can be reduced to our original problem using the method described

here.

The problem statement that we now want to solve is as follows. Let Yt denote a

random process

Yt = o-Bt + g (t), t > 0,

where o- / 0 and g belongs to the class of accelerating drifts. Let fay,by denote the

first time that Yt crosses a boundary consisting of two finite constants at ay and by:

Tayby= inf{t > 0 : Yt (ay, by)},

for ay < g(0) < by. The goal is to obtain the probability distribution of Tay,by.

This first-passage-time problem can be reduced to the problem of Brownian motion

with drift by using the following ideas. First, by symmetry, -Bt is standard Brownian

motion with respect to probability space (Q, F, P). Hence, the sign of a does not affect

the distribution of 'ay,by. Second, the value of 'fy,by is invariant to a scaling or a

shifting along the y-axis of the random process together with the boundary. Hence,

we can scale and shift the random process and the boundary to produce Brownian

motion with drift. These two ideas lead to a solution.

Our solution to the first-passage-time problem is as follows. The PDF of Tay,by
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equals

fyby (t) = frayby y (t, ay) + f ay,y (t, by), (4.29)

for almost t > 0 (with respect to the Lebesgue measure), where fay by is a

joint PDF of two random variables: the exit time 'a,,b, and the exit barrier TY .

The values of f ybyy (t, ay) and fay y (t, by) equal the right side of (4.17)

and (4.18), respectively, with the following substitutions:

a- ay - g(0) (4.30)
|a|

b by - g(0) (4.31)

h(t) t) t) -g(0) (4.32)

This solution reduces the problem to the case that we have already solved, the case

of Brownian motion with drift.

The proof of (4.29) proceeds as follows. We write 'ay,by as

tay,by - inf {t 0: Bt + g(t) > by or aBt + g(t) < ay}

=inf t 0 :0 Bt +I(t) > b or 7Bt + (t) < a

(subtract by g(0) and divide by lul),

where a, b, and h(t) are defined in (4.30)-(4.32). The value of ' is 1 or -1, implying

that ' Bt is a standard Brownian motion. Hence, 'ay,by has the same distribution as

the distribution of the first passage time for the barriers and the drift that appear in

(4.30)-(4.32).

A Constant Barrier

Consider the following first-passage-time problem. Let Xt = Bt + h(t), where h is an

accelerating drift and X(0) = 0. Let N denote the first time that random process Xt
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crosses a constant barrier at y:

in = inf {t > 0 : X, = r/ ,

where r/ is a non-zero constant.2 The goal is to obtain the probability distribution of

Before we provide the solution and the proof for this first-passage-time problem,

we discuss the key ideas in the proof. This problem can be reduced to the problem of

two constant barriers by using the following observations. A constant barrier at r7 is

equivalent to two constant barriers: one at 77; and the other at -oc if r/ > 0 or at oc

if r/ < 0. Since the barriers a and b in the formulation of our problem in Section 4.2.1

must be finite, we set a to be a large negative number for ry > 0 or set b to be a

large positive number for r/ < 0. This observation suggests that the first-passage-

time distribution in Section 4.2.1 can be adapted with appropriate values of a and b

for the one-constant-barrier problem. The essence of our solution is to quantify the

magnitude of a and b that achieve the desired level of accuracy.

Our solution to the first-passage-time problem is as follows. Let 0 < 8 < 1 and

Tmax > 0 be given. If 7 7 > 0 and if

a < inf h(s) - 2Tmaxln (4.33a)0<s <Tmax

b =-r, (4.33b)

then the CDF of ~a,b obtained from the solution in Section 4.2.2 satisfies

IP {~ab< t} - IP {T _ t} I 6, (4.34)

2 The case that r/ = 0 is trivial because ~ro is identically zero.
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for every 0 < t < Tmax. In another case of r), if q < 0 and if

(4.35a)

(4.35b)
1

b > sup h(s) + 2Tma In-
0<s<Tmax

then the CDF of ~a,b obtained from the solution in Section 4.2.2 is close to the CDF

of -7

IP {~a, < t} - Pf' {Tq t} 5 , (4.36)

for every 0 < t < Tmn. See Section 4.2.5 for a proof of the above statements. Hence,

the CDF of ~a,b can be used to approximate the CDF of T, at a desired level 6 of

accuracy.

A Moving Barrier

Consider the following first-passage-time problem. Let T denote the first time that

Brownian motion crosses a moving barrier:

r = inf {t ;> 0 : Bt = p(t)}

where p(O) / 0 and p is an accelerating drift. The

distribution of r.

goal is to obtain the probability

A solution to this first-passage-time problem is to rewrite the expression of T and

reduce the problem to a case that we can solve, i.e.,

T = inf {t > 0 : Bt +N(t) = },

where h(t) = -p(t) + p(O) and q p(O). Thus, we effectively reduce the problem to

the case of Brownian motion with drift and one constant barrier, the case that we

just solved (see "A Constant Barrier" on page 83).
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4.2.4 Elementary Examples

We consider two sets of examples. The first set covers Brownian motion with quadratic

drift and two-sided boundary; and Brownian motion and a moving square-root bar-

rier. For this set of examples, we obtain the PDFs using the methodology developed

in Section 4.2.2 (see also "A Moving Barrier" on page 85). Then the solutions of

these first-passage-time distributions are obtained using alternative methods in Sec-

tion 4.1.2 and [77]. The results from Section 4.2.2 and the results from the alternative

methods agree, thus verifying our approach.

The second set covers drifts that are not well-studied in literature but are impor-

tant elementary functions. The second set of examples show that our method can

solve first-passage-time problems that involve drifts such as polynomial, sinusoidal,

logarithmic, and exponential functions. For this set of examples, the first-passage-

time distributions have the shapes that match intuition and, as expected, integrate

to one. The examples from the first and second sets are organized in subsections: one

subsection for each example.

Quadratic Drift

Here, we obtain the PDFs of first passage time of Brownian motion with quadratic

drift using our method in Section 4.2.2. For illustration, we consider h(t) = t + It2

for the drift and a = -1 and b = 2 for the boundary (see Fig. 4-4a). Then, we verify

that PDFs are consistent with the PDFs obtained by an alternative method described

in Section 4.1.2.

To obtain the PDFs, we use the results in Section 4.2.2 and the methodology in

Section 4.2.3 to select key parameters (see "Values of c, E, ga, and g" on page 79).

We set ~= -2 to shift the exponent (see (4.19)) and set d = 108 to control the

numerical error (see (4.27a) and (4.27b)). We obtain the joint PDFs and sum them

to form the marginal PDF in Fig. 4-4b.

We also superimpose the PDF of the first-passage-time using the alternative

method of Section 4.1.2. The results that are obtained by the methods in Section 4.2.2
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and Section 4.1.2 agree, as can be observed in Fig. 4-4b. This good agreement shows

that the method in Section 4.2.2 is general and can be used to solve several first-

passage-time problems.

Square-Root Barrier

Here, we obtain the PDFs of the first passage time of standard Brownian motion

(without drift) and a moving boundary using our method described in "A Moving

Barrier" (page 85). In particular, let r denote the first time that standard Brownian

motion (without drift) crosses a moving square-root barrier,

-= inf t > 0 : Bt = i + It +2},

for > 0 and & + IAvc > 0. For illustration, we consider a = 0, i1, and I = (see

Fig. 4-5a). Then, we verify that the PDF is consistent with the PDF obtained by an

alternative method of [77].

To obtain the PDF, we follow the approach in "A Moving Barrier" (page 85). We

rewrite the expression of T, arriving at Brownian motion with drift and one constant

barrier:

T - inf {t 0 : Bt +I(t) = b}

where h(t) = I-v- - t5 and b = + Iv/-b . The CDF of T is given by the CDF of

Ta,b, where

Ta,b = inf {t > 0 : Bt + h(t) ( (a, b)}

and a = -30. Per a discussion in "A Constant Barrier" (page 83), this choice

of a guarantees that the difference between these CDFs is smaller than 10-17 for

0 < t < Tmax = 5 (see (4.34)). For consistency with other figures, we plot the PDF

instead of the CDF. The PDF of ~,,b is shown in Fig. 4-5b.

To verify our results, we plot the probability distribution using the alternative
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Figure 4-4: The PDFs for a quadratic drift from two of our methods (Section 4.1.2 and

Section 4.2.2) are consistent with each other (drift h(t) = t + nt 2 and the boundaries
a = -1 and b = 2).
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method of [77]. The probability distributions from our method and the alternative

method appear in Fig. 4-5b. The probability distributions from these two methods

agree.

Cubic Drift

Consider h(t) - P3 and the boundary at a = -1 and b = 1 (see Fig. 4-6a). For this

drift, the supremum norm sup,>0 Il"(s) is infinite, implying that we select a range

0 < t < tmax to plot the first-passage-timedistribution. We set tmax = 1.65, which is

large enough so that the PDF approximately integrates to one for 0 < t < tmax. 3 We

define ~to equal the right side of (4.20): ~= -6atmax. The joint and marginal PDFs

are shown in Fig. 4-6b.

The probability distributions match our intuition (see Fig. 4-6b). When t is small,

the joint PDFs f (t, a) and f b, (t, b) are approximately equal, meaning that

the process is equally likely to cross barriers a and b at small t. This characteristic is

intuitive and arises from symmetry of the barriers (i.e., Ial = b) and from the cubic

drift, which equals approximately zero at small t. As t increases, the joint PDFs rise

and decay, with the peak of f (-, b) occurring at a later time than the peak of

f'abb (-, a). The characteristic of the peaks is intuitive: as the drift moves away

from barrier a, the process is less likely to cross barrier a at large t. The marginal

PDF is obtained by summing the two joint PDFs.

Sinusoidal Drift

Consider h(t) = sint and the boundary at a = -1 and b - (see Fig. 4-7a). For

this drift, the supremum norm sup,;,> h"(s) I is finite so we let ~ equal the right side

of (4.19): ~= -a. The joint and marginal PDFs are shown in Fig. 4-7b.

The probability distributions match our intuition (see Fig. 4-7b). When t is small,

the joint PDF f (t, a) is larger than the joint PDF f ab (t, b), meaning that

the process is more likely to cross barrier a than barrier b. This characteristic is

3That is, we select tmax = 1.65, plot the PDF for 0 < t < tmax, and verify that an area under the

PDF is approximately one.
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Figure 4-5: The PDF for a square-root drift matches
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(a) boundaries at a = 1 and b = 1
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(b) PDFs

Figure 4-6: The PDF for a polynomial drift matches intuition (drift h(t) = t 3 and
the boundaries a = -1 and b = 1).
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Figure 4-7: The PDF for a sinusoidal drift matches intuition (drift h(t) = sin t and
the boundaries a -1 and b = )
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intuitive and arises from the fact that the initial location of the process (i.e., zero)

is closer to barrier a than to barrier b. The joint PDF f~aIR%, (-, a) consists of

two visible peaks, while the joint PDF f (-, b) consists of one. Appearances of

these peaks are intuitive: two peaks because the drift approximates zero at small t

and moves toward barrier a at a later time; one peak because the drift moves toward

barrier b and by the time it moves toward and touches barrier a, the random process

most likely exited the boundary, eliminating remaining peaks. The marginal PDF is

obtained by summing the two joint PDFs.

Logarithmic Drift

Consider h(t) = ln(t + 1) and the boundary at a -- 2 and b = 1 (see Fig. 4-8a). For

this drift, the supremum norm sup,>0 h "(s) is finite, and we set a to equal the right

side of (4.19): ~= b. The joint and marginal PDFs are shown in Fig. 4-8b.

The PDFs match our intuition. The joint PDF fab, (t, b) is larger than the

joint PDF Fa, (t, a), meaning that the process is more likely to cross barrier b

than barrier a. This characteristic is intuitive and arises because the initial position

of the process (i.e., zero) is closer to barrier b than to barrier a is and because the

drift moves away from barrier a. The marginal PDF is obtained by summing the two

joint PDFs.

Exponential Drift

Consider h(t) = 1 - et and the boundary at a = -2 and b = 1/2 (see Fig. 4-9a).

For this drift, the supremum norm sup,>O lh"(s)| is infinite, implying that we select

a range 0 < t < tmax to plot the probability distributions. For illustration, we select

tmax = 2. We define ~ to equal the right side of (4.20): ~ = betmax. The joint and

marginal PDFs are shown in Fig. 4-9b.

The PDFs match our intuition. When t is small, the joint PDF fkbka (t, b)

is larger than the joint PDF f b (t, a), meaning that the process is more likely

to cross barrier b than barrier a. This characteristic is intuitive and arises because

barrier b is closer to zero than barrier a is. The joint PDFs rise and decay, with the
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Figure 4-8: The PDF for a logarithmic drift matches intuition ( drift h(t) = ln(t + 1)
and the boundaries a = -2 and b= 1).
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Figure 4-9: The PDF for an exponential drift

and the boundaries a = -2 and b = 1/2).
matches intuition (drift h(t) -1- et
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Table 4.1: The proof of the main theorem consists of ten steps

Step Name

1 Transformation of the probability measure

2 Martingale property

3 A consequence of the transformation

4 A simplification

5 A consequence of the martingale property

6 Substitution of ZTab

7 Integration forms and the derivatives

8 An adjustment to the exponent

9 Integration transform

10 Relating the expectations to the IBVPs

peak of f (-, b) occurs earlier than the peak of f (-, a). This characteristic

of the peaks occurs because the drift moves away from barrier b. The marginal PDF

is obtained by summing the two joint PDFs.

4.2.5 Proofs of the Key Theorems

Examples in the previous section show that the PDFs match known results, agree

with intuition, and can be obtained using numerical and analytical methods. In this

section, we prove that the expressions for the PDFs and the bounds in our numerical

methods are correct. We begin with the most important proof for this section, the

proof for the expressions of the PDFs.

Proof of the First-Passage-Time Distribution

The proof for the first-passage-time distribution, which appears in Section 4.2.2, is

organized in ten steps as shown in Table 4.1. The key idea in the proof is to use

various transformation techniques.

Step 1: Transformation of the probability measure

Let Bt = Bt - h(t). By the Cameron-Martin-Girsanov Theorem [63, Thm. 5.1,

p. 191], §t is a standard Brownian motion with respect to the probability space
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(Q, F, P), where F, is the o-algebra generated by {B,, : 0 < u} and P is the prob-

ability measure defined to be [63, Cor. 5.2, p. 192]

P(S) = E {g1Zt}, for every t > 0 and every E E t.

In (4.37), FT is the --algebra generated by {Bu : 0 < u < t}; E {.} is the expectation

with respect to IP; and

Zt = eflo'(u)dB,,- f I'(u)|2 u (4.38)

is an Tt-martingale, which will be shown in the next step.

Step 2: Martingale property

Random process Zt is an TF-martingale. This can be verified directly by using the

definition of a martingale: for 0 < s < t,

=e '(u)dBu - f |N'(u)|
2 d"E {efthN(u)dBu F}

- e h'(u)dBu- 1 f |'(u)2 duE {ef t h'(u)dBu

__ eh'(u)dBu- - 1'u uj f|N 'u)|2
2du

(measurability with respect to F,)

(independence of F,)

1t
(a zero-mean normal random variable with variance h'(u) 12du)

= Zs.

Alternatively, we can verify the Novikov condition [63, p. 199, Cor. 5.13], which also

shows that Zt is a martingale.

Step 3: A consequence of the transformation

Recall that under measure P, process Bt + h(t) = Bt, is a Brownian motion with

drift h(t). Thus, random processes Xt under measure P plays a similar role to random

process Bt under measure P. This similarity is a basis of the next portion of our proof.

The similarity between random processes X, and Bt has an implication for the
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first passage times that they generate. Let

Ta,b = inf {t > 0 : Bt ( (a, b)}.

The similarity between (t, ~a,b) under measure P and (Bt, Ta,b) under measure I

implies that

P a,b < t and XR b

P Fa,b t and Xrb

a} - f{Tab < t and BTa,b

= b} = f{Tab _ t

=a} and

and BTb = b}.

The left side is the joint density that we wish to obtain.

Step 4: A simplification

Let x A y denote the minimum between x and y. Equation (4.39) simplifies to

Pf a, t and Ra. =

= E 1{ bTa it

a}

and BTa,} Zt

(use of (4.37) with S = {Ta,b < t and BTa, = al)

=E E Ta,E{1 t and BT =a} Ze FATab}}

(Law of iterated expectation)

=E 1 Tab<t and BTab=a} E {Z FtATab}

(TtAra-measurable).

(4.41)

(4.42)

Similarly, (4.40) simplifies to

and Tab = b = E {1{Ta,,bt and BTb =b}E {ZE t |

The conditional expectation E {Zt I FtATa,b} can be evaluated explicitly using a mar-

tingale property of Zt.
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A consequence of the martingale property is that

E {Z| FtAT b} = ZtAT,

by the martingale stopping theorem [74, Thm. 3.3, p. 11), applied to a finite stopping

time, (t A Ta,b) t < oc. With the martingale property, the right sides of (4.42) and

(4.43) can be further simplified.

Step 5: A consequence of the martingale property

Equation (4.42) simplifies to

P{Ta,b < t and Rb = a }
= E {1{Ta<t and BT =a} ZtATab (martingale property)

= E {1{Tab<t and BTa,b -a ZTab} (t A Ta,b = Ta,b on the set {Ta,b t}).

(4.44)

Similarly, (4.43) simplifies to

P {Ta,b < t and b = b} E 1(Ta,b<t and BTa,b=b} ZT.b (4.45)

Note that the expression in (4.44) is similar to the expression in (4.41) except that

Zt is replaced by ZTab . The replacement of t by Ta,b is a transformation of time and

requires several steps including an application of the martingale theory. In the next

step, we substitute the expression of ZTa6 .

Step 6: Substitution of ZTa,b

The expression of Zt in (4.38) involves a stochastic integration and is difficult

to manipulate. To alleviate this difficulty, we apply Ito's formula or the stochastic

integration-by-part formula [78, Thm. 4.1.5, p. 46], and transform Zt into the Riemann
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integration

Z = eN'(t)Bt-f' Bah"(u)du-j ft l'(u)|
2
du

A continuation of (4.44) gives us

and RT, b

=E ]E{

=E IE{

= a}

1 {Ta,bst and BTa,b=a} ZTab Ta,b

(Conditioning on Tab or equivalently on the o-algebra generated by Tab)

1{Ta,b<t and BT, b=a I(Tab)BTa, - fab Buh"(u)du- 1 fo a'b |N'(u)|
2du Ta,b

(substituting the expression of ZTa6 ).

We further simplify the expression using these steps. First, we factor 1 {Tabt and BTb =a

1 {Tab<t 
1 {BTa} . Then, we set e '(Ta,b)BTa,b - eh'(T,5)a because the expectation ap-

plies to the set { BTa,b = a}. Finally, we move the random variables that are functions

of only Ta,b out of the conditional expectation. These steps result in

P "a < t andab = a}
a(..~-b B(udu IAW

=E 1 Ta b<t} eh'(Ta,)a-j f '() 2 d" E BTa,b=a T Ta,b . (4.46)

Similarly, a continuation of (4.45) gives us

P{a,b <t andRa b = b}

- E { eT(ab t ) a- iiufu)2d" E{1{BT e fETa,b BaN"(u)du Ta,b} (4.47)

Step 7: Integration forms and the derivatives

The conditional expectations are functions of Tab [35, p. 20] [38, p. 340], and so

are the random variables outside the conditional expectations. As a consequence, we
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can write the expectations in terms of the integrations and the PDF of Ta,b

Let fTab denote the PDF of Ta,b, i.e., fTab(V) = P {Ta,b K v}. We write (4.46)

as

P {a,b < t and X, = a}

e '(v)- loh '(u)I"" E{1 a e- fTa ,b BJh"(u)du Ta,b

Taking the derivative with respect to t, we have the joint PDF

f~ ~b (t, a) - eah'(t)-I fl 1 (U)"12" {1d ef ab BuN"(u)du Tab
Ta, bX ;a, b (t )=e _20 uE IBTa,b =aJ -0T~ t} fTa1 b (t)

(4.48)

for almost everywhere (a.e.) for t > 0 by Lebesgue's differentiation theorem [38,

Thm. 7.2.1, p. 228]. Similarly, a continuation of (4.47) gives us the joint PDF

tIfTab Mt,

(4.49)

a.e. for t > 0. It remains to characterize the conditional expectations.

Step 8: An adjustment to the exponent

To simply the proof, we make the exponent of e non-negative. In particular, we

multiply the right side of (4.48) by este-at and rearrange the expression, where ~ is

defined as in Section 4.2.2. These steps give us

f~abbT~ (t, a) = ea 2o 
"T(BuE"(u)+c)du

-a,b B a,bl
Ta,b t~fTa b(t)

(4.50)

By construction of Z, the exponent is now non-negative:

Buh"(u) + E > 0, for every 0 < u < Tab.
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To verify (4.51), we bound a < B_ < b, apply an inequality Ta,b = t tma, bound

info<Ktma h"(t) < N"(u) supotst_ I"(t), and substitute ~.

Similarly, we multiply (4.49) by e'e-d and arrive at

f6ab (t, b) - ebh'(t)- f Ih'(u)Pa±t E{1 'B(Tab) I Ta,O = t}fTa(t).

(4.52)

The conditional expectations are difficult to evaluate with a direct method because

the condition "Ta,b t" alters the measure of random process Bu. To alleviate this

difficulty, we use a transformation.

Step 9: Integration transform

We write the joint probability density as a product of two terms: the term that

is easy to evaluate and the term that is difficult:

ft 0 (t, a) = eai'(t) 2 fa I('(u)P)du+t

where

fa(t) = E{11 eBT -=al e (Bu"(U)+)du Ta,b = t} fTa, (t (4.53)

The term fa is difficult to evaluate due to the conditional expectation. To characterize

fa, we take an integral transform of fa, resulting in a function ga:

ga(t) = fa(v)dv.

The transformation is invertible by taking the derivative of ga. Substituting fa, we

have

ga(t) = E {1{BTa,b =a abt} T a(Bau"(u)+)du , (4.54)

which no longer has the conditional expectation and is easier to obtain than fa.
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Similarly, we write

f".ab,'X'ab (t, b) -eb't 2 ~h() 2 u~ fb t),

where

f(t) = IE{1B -} f T
ab(B i"(u)+2)du Ta,b = t} fra(t). (4.55)

Taking an integral transform of fb, we have

gb(t) - jfb(v)d

= E {1{B ab} 1 {T t} e- fTa4(BN"(u)+2)du . (4.56)

The right sides of (4.54) and (4.56) can be obtained from using a limit operation and

a connection to the PDE. It remains to verify that ga and gA satisfy (4.21) and (4.24).

Step 10: Relating the expectations to the IBVPs

The Feynman-Kac formula [74, Thm. 8.2, p. 81] implies that

E { e- < { Tab a } " (BJh"(u)+)du

+ E {1 #b>t}O(Bt)e- f (BuN"(u)+2)du = y(0, 0, t, E), (4.57)

where y is a unique solution to the differential equation (4.22) with the boundary

conditions in (4.23) and when 0 < E < b -a. If E is too large, the boundary conditions

(4.23b) and (4.23c) will be inconsistent at (a, t), implying that the IBVP has no

solution, so E needs to be small for (4.57) to hold. Uniqueness follows from certain

properties [74, p. 81, eq. (8.17)] of the boundary conditions and H6lder continuity for

xt"(t). Writing the first expectation as ga(t), taking the limit of (4.57) as E \ 0,

and switching the limit and the expectation (by dominated convergence theorem [99,
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Thm. 1.34]), we have

Bt)) e- f(BuN"(u)+J)du Slimy (0, 0, t, E).

The limit inside the expectation is zero, giving us (4.21).

Similarly, for a fixed r > 0, a fixed s > 0, and any 0 < E < b - a we have

E { 1 IaIBT b} e fT',b U"(+du

+ E {1 4Tb>t}V)(Bt)e- f(BuN"(u)+)du = z(0, 0, t, E), (4.58)

where z is a unique solution to a PDE and the boundary conditions in Section 4.2.2.

Taking the limit of (4.58) as E \ 0 gives us (4.24). The proof is complete.

Proof of the Inequalities (4.27a) and (4.27b)

We want to show that if Ea and Eb satisfy (4.27a) and (4.27b), then

0 Y Y(0,0, t, Ea) - ga(t) < d and

0 < Y(0, 0, t, Eb) - g (t) < d.

The proofs for Ea and Eb are similar. For brevity, we show the proof only for Ea-

Fix t in the domain of ga (either t > 0 or t E (0, tmax]). We start from (4.57),

which is valid because 0 < Ea < b - a, and then replace the first expectation with ga

in (4.54), resulting in

y(0, 0, t, Ea) - ga(t) = E {1 T>t (Bt,Ea) f (B_"(u)+&+s)du . (4.59)

Here, we write 4(-, Ea) to emphasize the dependence of the right side on Ea.

The argument of the expectation is non-negative, giving us the first inequality:

0 <_ Y(0, 0, t, Ea) - ga(t).
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To show the other inequality, we bound

E {1T #>tl/(Bt, Ea)e } < E {1 - {a B,<a+Ea}

= P {a < Bt < a + Ea}. (4.60)

Recall that Bt is a zero-mean normal random variable with variance t. Hence, we can

write the right side in terms of the integration and bound it:

P{a < Bt < a+ Ea} = fa a
1 _ 2
e 2tX dx

v Ft

< a max e- "2, e- (a±e)2

Ea - (a+ea

<K

(because Ea < 21al)

L a .(4.61)
[2ire a + Eal

The last line is a maximization over t > 0, by taking the first and second derivatives

of the previous line. Equation (4.59), together with inequalities (4.60) and (4.61),

gives us

y(0, 0, t, Ea) - ga(t)
1 Ea

V_2ire la + Eal

Using the bound 0 < Ea

and

< ad" , we can show that a-+ Ea1 +d V2 re'
< 0, la + Eal = -a- Ea,

1 E < d.
V/in ja + EalI

The proof is complete.

Proof that (4.33) implies (4.34) and that (4.35) implies (4.36)

Fix 0 < 6 < 1 and t E (0, Tmax]. We want to prove two statements. First, if g > 0,

if b = 7, and if a satisfies (4.33a), then 0 < IP{Fa,b < t} - P{f t} < 6. Second, if

Tj < 0, if a = I, and if b satisfies (4.35b), then 0 IP{fab <t} --P1 {', t} a. The
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proofs for the two statements are similar. For brevity, we only show the proof of the

first statement.

Note that

{S > 0 : X > b} C{s ;> 0 : Xs < a or s ;> b} ,

and, by taking the infimum of both sides, we have i- ;> ~a, , which implies that

{a,b < t} {f < t}.

Taking the probability of both sides gives us the first inequality:

0 I P {~a,b t}- P {fb <t}.

To verify the other inequality, we start from the inclusion and write

P {a,b t} - P f{Tb t} = P {{Fa,b t} \ {I;F t}} , (4.62)

where "\" denotes the set difference. The event on the right side satisfies a relationship

{~a,b 5 t} \ {f t} = {Fa,b t and ib > t}

= {fa < t and Tb > t} (the random process exits from barrier a at time ~a,b)

P {{a,b t} \ {fT t}} I P {a < t} . (4.63)

Next, we show an inclusion

{fta t} C {Ta t},
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where a= supo<,r<t[a - h(r)] and

T = inf {s > 0 : B, = a},

the first time that a Brownian motion crosses a constant barrier at a. Take W - Q

such that -a(w) < t. Then,

{0 <s t: B,(w) a-(s) C fO <s t: B,(w) < sup [a-N(r)]
o<r<t

C {0 < s : B,(w) < a}.

Taking the infimum of the first and last sets and replacing X8 (w) - B,(w) + h(s), we

have

inf {0 < s < t : X,(w) < a} inf {0 < s : B,(w) < a}.

The left side equals -Ta(w) since a(w) < t. The right side equals T,(w) since a < 0

from the hypothesis that a = a - info<,<t h(r) < - 2 Tmax ln < 0. Hence,

Tb(W) > Ta(w),

which implies that t > Ta(w).

Taking the probability of the inclusion results in

P {fa < t} < P {Ta < t} . (4.64)

The right side can be bounded:

P{Ta < t} < P{Ta Tmax}

( al
= 2Q Tmax

K a2

< e 2Tmax .

(the reflection principle [63, p. 80, eq. (6.2)])

(4.65)
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The last inequality is from Q (x) < ie-X2 2 for x > 0. By the definitions of a and a,

we have

a<- 2Tmax In < 0

which gives us

e 2Tmax < (4.66)

Combining (4.62)-(4.66), we have

P{fa,b < t} -P {Tb < t} <.

4.3 Multi-Dimensional Brownian Motion with Poly-

nomial Drift

In this section, we solve first-passage-time problems involving multi-dimensional Brow-

nian motion with polynomial drift. The goal is to obtain the probability distribution

of the first time that n-dimensional Brownian motion with polynomial drift crosses

a boundary that is an open sets in the Euclidean space. The shape of the boundary

depends on an index k, where k = 1,2, ... , n. Our main contributions from this

section are

" a methodology involving reduction and ordered statistics to solve first-passage-

time problems;

" an expression of the CDF of the first time that multi-dimensional Brownian

motion with polynomial drift crosses a boundary for the case that k = 1; and

" expressions for a lower bound and an upper bound for the CDF of the first

time that multi-dimensional Brownian motion with polynomial drift crosses a

boundary for the case that k > 2.

108



The solution to first-passage-time distribution has applications to network synchro-

nization.

The remaining parts of this section are organized as follows. In Section 4.3.1, we

state the first-passage-time problem that we aim to solve. In Section 4.3.2, we pro-

vide the solution to the first-passage-time distribution. In Section 4.3.3, we discuss

important aspects and the consequences of our solution. In Section 4.3.4, we provide

elementary examples demonstrating applications of our solution. In Section 4.3.5, we

prove the main theorems that lead to the solution of the first-passage-time distribu-

tion.

4.3.1 Problem Statement

Let Bt (B1), B . . . ,(B) denote an n-dimensional Brownian motion defined on a

probability space (Q, F, P), with an initial position at the origin, i.e., P {Bo = 0}=

1 where 0 is an n-dimensional vector of all components equal to zero. Let Xt

X1, X 2 ,.. . , X * denote an n-dimensional random process

X('= B) + hi (t), t > 0 and i = 1,2, ... ,n,

where hi (t) is a polynomial in t. For each k = 1, 2,.. , n, let T,fl (k) denote the first

time that k components out of n components of Xt cross a boundary consisting of

two constants at a and #:

T,3 (k) = inft > 0 : j C {1, 2 ... ,} such that |,| = k and Vj -JX(a,)

for finite numbers a and # such that a < hi (0) < # for each i = 1, 2, . . ., n. For each

k = 1, 2,..., n, we want to bound or, if possible, derive, the probability distribution

of rF,, (k).
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4.3.2 Solution to the First-Passage-Time Distribution

We discuss two cases separately: k = 1 and k > 2. For the first case, we are able to

obtain the expression of the CDF of T,, (k). For the second case, we provide a lower

bound and an upper bound on the CDF.

Our solution for the case of k = is as follows. For t > 0, the CDF of T,f (1) is

given by

n

P {fT.3 (1) t} 1 - [I - F(i) (t)] , (4.67)

where F(j) (t) is the CDF of random variable i.e., F(i) (t) = P r t

and r' denote the first time that Brownian motion with polynomial drift crosses a

boundary at (a,/):

rd ' = inf I t > 0 : X ((,#

The CDF of F (i) (t) is given by an integration of the PDF of r For a polynomial

hi (t) of degree two or less, i.e., for hi (t)= ci,o + ci,it + ci, 2 t 2 , the PDF of r' is given

in Section 4.1.2 with these specific values of the barriers and the drift: if ci,2 > 0, we

set

a = a - ci,o, b - ci,o, h(t) = ci,it + ci,2t2

and if ci,2 < 0, we set

a = ci,o - a, b ci,0 - 3, h(t) = -ci,i - ci, 2t 2 .

For a polynomial of degree three or more, the PDF of rd is given in Section 4.2.2

with these specific values of the barriers and the drift:

a=aoz--hi (0), b =#0-hi (0), h(t) =hi (t) -hi (0).
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This specification yields the PDF of the first passage time T,, (1).

For the case of 2 < k < n and for t > 0, the CDF of T,, (k) satisfies the lower

bound and the upper bound

i=k JC{1,2,...,n}

is7=i

p (t) 1-Pe (t)

< P {rTc (k) < t}

i=k jc{1,2,...,n}
1171= i

(1 - qf (t)), (4.68)

where the product over an empty index, ]jHeO(-), is defined to be 1,

0 
t = 0

1 C- (0-ht) + ,, ("-jt t > 0,

qj t F () ,

and (D(.) is the CDF of the standard normal random variable: @(z) - fz 1 e-/2dy.

4.3.3 Important Aspects of the Solution and the Consequences

For a special case when hi (t) = h 2 (t) = -.- = hn (t) for all t > 0, the solution in

Section 4.3.2 can be simplified. When the drifts are identical, each random process X)

is Brownian motion with drift hi (t). Hence, the first passage times rj,1 2, ... ,)

are identically distributed. This observation gives us a simplification: when the drifts

are equal, (4.67) becomes

P {Ta,O (1) t} =1- I - F (t)1, (4.69)
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and (4.68) becomes

n
( n P 1 (t 1 - i t

i=k

< P {Tao (k) t}

< [1 (t) 1 - qi (t) .(4.70)
i=k

The case of identical drifts has applications for synchronization to homogenous clocks

(see Section 4.5.2).

4.3.4 Elementary Examples

As an example, we consider a random process X = (XP), X 2 , ... , X) for

X( = Bt + hi (t), t > 0 and iZ = 1, 2, ... ,n,

where n = 10 and hi (t) = t + 1 t 2 . We set the boundary to a = -1 and b = 2. We

consider various values of k, namely k = 1, 2, 10. For the case that k = 1, we obtain

the CDF of the first passage time using the expression in (4.67). For other k's, we

bound the CDF of the first passage time using the expressions in (4.68). The CDF

and the bounds are shown in Fig. 4-10-Fig. 4-11 for different k's.

From the figures, the CDF for k = 1 and the bounds on the CDFs for k = 2, 10

take positive values on x > 0, increase with x, and reach the value of 1 as x approaches

infinity. These behaviors are expected for the CDF (k = 1), and also expected for

the lower bounds and the upper bounds because these bounds are valid CDFs. The

strengths of these bounds are that they are easy to obtain even for large values of k

and n. The CDF and the bounds on CDFs are useful in characterizing the time that

a network lose synchronization (see Section 4.5.2).
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Figure 4-10: The CDF for k = 1 can be obtained easily using the expression in (4.67).

4.3.5 Proofs of the Key Theorems

This section contains the proofs of the equality in (4.67) and the bounds in (4.68). The

proofs are simple and rely on the availability of the first-passage-time distributions for

Brownian motion with polynomial drift that we derived in Section 4.1 and Section 4.2.

Proof of (4.67)

For k = 1, the idea for the proof is simple. The first passage time r, (1) is the

first time at which any of the random processes X( , X( 2 ,. .. ,X crosses a boundary.

Thus, for k = 1, the first-passage-time problem, which involves the n-dimensional pro-

cess, reduces to the first-passage-time problems, which involve several one-dimensional

processes.

The proof is divided into two steps. First, we show that

raf(1) = nun r(1) (2) (n) (4.71)

almost surely (a.s.) on Q. Then, we obtain the probability distribution of the mini-
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Figure 4-11: For k > 2, we provide the lower bound and the upper bound on the
CDF. The bounds themselves are valid CDFs.
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mum, the right side of (4.71). The proof proceeds as follows.

Step 1: Equality of two random variables

Let w E Q. Foreachi= 1,2,...,n, wehave

{t > 0 :XW(w) ( (a, #)} c {t > 0: ]1 <j

and by taking the infimum of these sets, we have r,(w) > r (1, w). Hence,

(4.72)

Next, we want to verify the inequality

min {T(w), r2)(Lw), . (.n. , (L) < r"' (1, W) (4.73)

If rp (1, w) = oc, the inequality is trivial. If r,0 (1, w) < oo, then, by definition of

ra,3 (1), we have Xf (w) (a, /) for some 1 j < n and for s = r,, (1, w). Hence,

T (w) < s = T,, (1, w), giving us (4.73). The inequalities (4.72) and (4.72) imply

(4.71).

Step 2: Probability distribution of the minimum

For any t, we have

Pin((1) 
(2)PfT 0 , () <t =Py mmI T ,3, . , r ) < t}

and rn* > t} .

Random variables (1) (2) (n) are independent, giving us the expression in

(4.67).

115

n X(" ( (a, #)

min {rd (W), rd(LO), . .... r" (LO)} ;> r",3 (1, LO).

= 1 -- P r1) > t, (2) > t, .



Proof of the Lower Bound in (4.68)

To verify the left-most inequality in (4.68), we proceed as follows. First, we verify an

inclusion

3,7 C {1, 2, n} such that |JI = k and Vj E Xj (a, 0)

C {ra, 3(k) < t} . (4.74)

Then, we verify that the probability of the event on the left side of (4.74) is given by

the right-most expression in (4.68). The proof of the upper bound in (4.68) is simple

and appears in steps.

Step 1: An inclusion

Fix k = 1, 2, ... ,n, fix t > 0, and take w c Q that belongs to the event on the

left side of (4.74). By an existence of index set J, we have

t E Is ;> 0 : ]A M c11,2, ... ., n}I such that | I = k and Vm E M X(' (w) ( (ae, )

(4.75)

Hence, t is greater than or equal to the infimum of the set in (4.75), or equivalently,

t ;> T,, (k, w).

Step 2: Probability of an event

We write the event on the left side of (4.74) as a union of disjoint events and have

P J] J C {1, 2, ... . n} such that |,| = k and Vj E J Xj ( (a,3)}

-i E
JC{1,2,...,n}

|JI=i

P {Xf (a, #)} { ,.
jE fE{1,2,...,n}\,7

P{X) E (o,,) ). (4.76)

Recall that X( = hi (0) E (a, #) by construction of a and 3 and recall that, for s > 0,

XS has a normal distribution with mean hi (s) and variance s. Hence, the right side

of (4.76) evaluates to the left-most expression of (4.68).
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Step 3: Lower bound for the CDFs of T,, (k)

For given k and t, the inclusion in step one of the proof gives us

PEl C c 1, 2, ... , n} such that 1,7|= k and Vj EJ X (,* (a,#)

< P {ra,/ (k) < t}.

Step two of the proof gives us the expression of the probability on the left side.

Combining step one and step two, we have the left-most inequality in (4.68). The

proof is complete.

Proof of the Upper Bound in (4.68)

To verify the right-most inequality in (4.68), we proceed as follows. First, we show

that the random variable T, (k) is lower bounded by Yk, where Yi < Y 2 < ... < Yn

are the values of Ta, (1) , Ta, (2) ... , rT, (n) placed in the increasing order. Sec-

ond, we derive the probability distribution of Y. The derivation is a simple gen-

eralization of the derivation that appears in ordered statistics. A difference be-

tween our derivation and the derivation in the ordered statistics is that for our case

ra,3 (1) , rc,, (2) , ... , T,3 (n) may have different probability distributions. The proof

of the upper bound in (4.68) is simple and appears in steps.

Step 1: Lower bound for T, (k)

For each k = 1, 2, ... , n, we will verify that

Yk 5 Ta, (k) (4.77)

a.s. on Q. Take W E Q. If Ta,, (k, w) = o, then (4.77) is trivial. If T,0 (k, w) < oc,

then take j C {1, 2, . .., n} such that |JI = k and

X (a, #),Vj E J,
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for s = r0,, (k, w). By definition of .. , (w), we have

i) Vj E J.

Taking the maximum of the right sides over j c J, we have

max {r <(w):jE T ap (k, w). (4.78)

By definition, Yk(W) is the k-th smallest number among r) (w), r (w),

so

Yk(w) < max 7r3(w) :j J}. (4.79)

Combining (4.79) and (4.78), we have (4.77)

Step 2: CDF of Y

For each k = 1, 2, . . ., n and for each t E R, we will verify that P {Yk < t} equals

the left-most expression of (4.68).

Let

1{
if < t,

otherwise,

and let C - C1 + C2 + - -- Cn. Random variable C counts the number of values
(1) (2) (n)

Trl, r, ... , T that are less than or equal to t. Since events {Yk t} and {C > k}
mean k or more of r 's are less than or equal to t, we have the equality

P{Yk < t} = P{C > k}.
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We write the event {C > k} as a union of disjoint events, giving us

P{C > k} P{Vj E J, Cj = 1 and
j=k JC{1,2,...,n}

VE E {1, 2, ... ,n}\J, C 0.

The random variables Ci's are independent, giving us the CDF:

P{Yk < t} = (fEpj)) (t) (-P (0).
i=k JC{1,2,...,n} \jEJ / tG{1,2,.,n}\J

|JI=i

Step 3: Upper bound for the CDFs of T,, 3 (k)

For given k and t, step one of the proof gives us P {T,3 (k) < t} < P {Yk < t}.

Step two of the proof gives us the expression of P {Yk _ t}. Combining step one and

step two, we have the right-most inequality in (4.68). The proof is complete.

4.4 A Discrete-Time Process With Certain Corre-

lations

In this section, we consider a specific class of first-passage-time problems, where

the random process is a discrete time process and the boundary is a constant. The

motivation for this form of the random process and boundary comes from applications

in frame synchronization. In particular, the time until a receiver correctly acquires a

frame is a random variable, whose probability distribution can be obtained by solving

first-passage-time problems. Here, we provide the probability distribution of time to

complete frame synchronization.

In this section, we solve first passage time problems involving discrete-time process

with certain correlation. Our main contributions this this section are

e a methodology involving Markov chain, stopping time, and renewal theory to

solve first-passage-time problems;
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" an expression of the expected time until a receiver correctly acquires a frame;

and

" an expression of the probability mass function (PMF) of the during until a

receiver correctly acquires a frame.

The solution to first-passage-time distribution gives insight into the amount of time

required for frame synchronization.

This section is organized as follows. In Section 4.4.1, we state the first-passage-

time problem that we aim to solve. In Section 4.4.2, we provide the solution to the

first-passage-time distribution. In Section 4.4.3, we discuss important aspects and

the consequences of our solution. In Section 4.4.4, we provide elementary examples

demonstrating applications of our solution. In Section 4.4.5, we prove the main

theorems that lead to the solution of the first-passage-time distribution.

4.4.1 Problem Statement

In this section we start by describing aspects of the transmitter and receiver which

are relevant to the frame synchronization problem. We then present the marker

acquisition procedure and introduce the concept of arrival process.

The transmitter delimits a long sequence of data to generate frames of variable

lengths. Frame lengths or the number of data symbols per frame, {Li i ;> 1}, can

be modeled as independent and identically distributed (IID) random variables. The

transmitter injects a marker, (c1, c2 , ... , cm), of fixed length, f ;> 2 symbols,

before each frame to form a packet. A modulator then generates a waveform from a

sequence of data and marker symbols to be transmitted through the channel.

Adjacent packets are separated by an interval of length L', where {L' : i > 1} are

IID and independent of L d (see Fig. 4-12). Each Ls corresponds to the length of the

idle fill characters in the case of continuous transmission or the length of silence in the

case of bursty transmission. The waveform representing the packets and separation

intervals is corrupted by noise and fading. The corrupted waveform becomes an input

to the receiver.
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(a) continuous transmission

Li i Ls L +1 k L+1 |

*FMI f I FmI f I

em
(b) bursty transmission

Figure 4-12: Two adjacent packets are separated by an interval, during which the
transmitter has no data to send.

Upon receiving an input waveform, the receiver generates a sequence of soft de-

cision variables, {Xj : j > 1}, which forms the input for the frame synchronizer.

Variable Xj represents a corrupted marker symbol, a corrupted data symbol, or a

corrupted symbol corresponding to the silent transmission. The frame synchronizer

is said to acquire a marker at an index k if it decides, either correctly or incorrectly,

that the soft-decision variable Xk corresponds to the first symbol of the marker.

To acquire a marker, the frame synchronizer forms a real-valued decision variable, 4

V3 = g(Xj y+t-1),

for each symbol time, j > 1, where Xz:k denotes a vector [Xi Xj+ 1 ... Xk] for j < k.

If the decision variable V3 belongs to a predetermined set, R, of real numbers, the

frame synchronizer acquires a marker at index j. 5 Otherwise, the frame synchronizer

4 Recall that the length of markers is fm . We consider the case, in which only fmn consecutive

Xj's are required in forming the decision variable.
5For example, the set R can be [7, oo) for the case that L' = 0 and for binary antipodal modu-

lation, where r is known as a threshold.
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tests the next decision variable, Vj+1. Examples of g are given by

gi(Xj: i+/-1) = E ckXj+k-1, (4.80)
k=1
fm"

g2 (Xj:j+fm -1) = E [ckXj+k-1 - IXj+k- 1, (4.81)
k=1~

for antipodal marker symbols [24, 25]. Note that random variables {V } are not

mutually independent. In fact, this property makes the exact derivations of the

performance metrics prohibitively difficult.

In this setting, the classical method [87] for analyzing the problem of synchronizing

spread-spectrum waveforms does not apply since it assumes a constant frame length

(which equals the spreading sequence period). In contrast, the spacing, Lq + L i+Efm

between the adjacent markers in frame synchronization varies from one packet to an-

other. Here, we propose to analyze the frame synchronization problem by employing

mathematical tools developed for studying the arrival processes.

A systematic approach to obtain performance metrics for frame synchronization

involves the use of an arrival process, {Ji}, in which 1 < Ji < J 2 < J3 < ... denote

arrival times of markers. An arrival is said to occur at time j E Z+, if the first symbol

of the marker begins at index j (and hence the decision variable Vj belongs to R under

an ideal case). 6 We refer to a sequence of discrete time {j Ji < J < Ji+1} as a marker

spacing span (MSS), with the convention that Jo < 1. It will be apparent that the

time until the first arrival, J1 , and interarrival times, Ti Ji+1 - Ji = Ld + Li + /a,

play an important role in the analysis.7

We consider a time invariance property for the decision variables. In particular,

the probabilities

VJijiJl E Rpc VJi-e.+2:ji E ZC}

6The symbol Z+ denotes the set of all positive integers.
'In general, the time until the first arrival J1 and interarrival time Ti have different distributions.
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fail

Figure 4-13: The diagram represents the frame synchronization process, which ter-
minates after the correct acquisition of a marker.

are identical for any i, and so are

P {Vji+1:Jii E Rc, VjiH E R I VJji-f+2: j E Rc}

Intuitively, the time invariance property states that statistical properties of the deci-

sion variables within an MSS do not depend on the choice of MSS. Time invariance

property is valid when the probability of transmitting a given symbol, the channel

statistics, and the decision rule do not change during frame synchronization.

4.4.2 Solution to the First-Passage-Time Distribution

This subsection contains two parts: the solution for the expected time until a correct

frame acquisition; and the solution for the PMF of the time until a correct frame

acquisition. Instead of seconds or other absolute time, we measure the amount of

time in terms of the number of MSSs to provide fair comparisons of synchronization

algorithms of short frames and long frames.

Expected Number of MSSs Required for a Correct Acquisition

The frame-synchronization process ends when the receiver acquires a correct marker.

When an incorrect marker acquisition occurs, we assume that data symbols in the

frame will be recognized as incorrect, for example by means of verifying the frame
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structure or by means of cyclic redundancy check (CRC). After an incorrect acquisi-

tion is detected, the search for a marker starts all over again. These procedures are

represented by the diagram in Fig. 4-13.

To measure the amount of time required to synchronize correctly, we count the

number of MSSs that are needed for a correct acquisition. Such a number is denoted

by a random sum, M, which is equal to

K

M = Mi, (4.82)
i=1

where K > 1 is a random variable representing the number of attempts until frame

synchronization ends and Mi > 1 are random variables representing the required

number of MSSs for attempt i. The expected number of MSSs required for a correct

acquisition, E {M}, is a suitable metric for frame synchronization.

We consider {Mi} to be IID and K to have a geometric distribution with probability

of success PcAcq, where PcAcq denotes the probability that a marker acquisition is

correct. This can be justified as follows. Typically, an error-checking process lasts

on the order of the frame length. Hence, different synchronization attempts examine

different portions of the MSSs, implying that {Mi} are independent. Furthermore, it

is reasonable to model a time instant at which an incorrect acquisition occurs as a

random variable. Therefore the arrival processes observed during different attempts

are identically distributed, implying that {Mi} are identically distributed. Therefore,

{Mi} are IID, and K has a geometric distribution with probability of success PcAcq.

Using the above model, we show in Appendix A.1 that 8

E {M} = E {M1} E {K}. (4.83)

Substituting Ef {K} = 1/PAcq gives

E {M} = E {M1} /PcAcq- (4.84)

8Note that the equation is not a direct application of the iterated law of expectation [8, p. 323]
since we do not require K and M1 to be independent.
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Defining 9

Pnal P {Vi:ji ERc} ,

Pdet A P {Vi: j, _1 E RC, Vai E R}

Pnal-nal A P {Vi: J2 E RC} ,

Pnal-det A P {Vi:J2-1 E RcVJ2 C R}

Cnal A P {VJ2+1: J3 E R' I VJ2 -r w+2: J2 E 'RC,

Cdet P{VJ2+1:J3--i E JEcVJ3 E RI VJ2 -tm-ax+2:J2 E JZ},

we show in Appendix A.2 that

c Pdet + Pnal-det,
PcAcq -

Pdet + Pnal-det + Pna1-.a1Cdet,

if cnal = 1;

if 0 < Cnal < 1,

and, in Appendix A.3 that

1 + Pnal + Pnal-nal,l-Cnal

E {Mi} 1+ Pnai,

O,

if 0 < Cnal < 1;

if CnaI = 1 and Pnal-nal = 0;

if cnai = 1 and 0 < Pnal.nai < 1.

For convenience, the probabilities in (4.85) will be referred to as the transition prob-

abilities. In the next section, we will derive another performance metric, which is

suitable for bursty transmission.

9When J1 = 1, we define Pdet A P {Vj1 E R}. The subscript "det" stands for "detection," which
refers to a detection of the marker. The subscript "nal" stands for "no alarm," which refers to the

situation that decision variables under consideration belong to RC.
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Probability of Correction Acquisition Within a Given Duration

The performance metric introduced in the previous section is suitable for transmission

systems without delay constraints. For systems with delay constraints, e.g., bursty

transmission systems, an appropriate performance metric is the probability of correct

acquisition within a given duration.

The probability of correct acquisition within m MSSs is equal to P { M < m},

where the random variable M is defined in Section 4.4.2. Then,

P{M <m}
00

=IP{Mi+M2+- -+MK-mI =k}P{K=k}
k=1

=Ef~ + 2M 1-M(I-cc kPcAcql
k=1 A ykm

where (1 - PcAcq)O A 1. The upper limit of the summation becomes finite since

P{M+M 2 +---+Mk < m}=0

for m < k, owing to the fact that Mi 1. The

given by a recursive formula (see Appendix A.4)

}(1,rm) 1- P {M 1 > m + 1},

m-k

7(k + 1, m) - 7(k, m - n)P{Mi = n},
n=1

function i(k, m) for 1 K k K m is

for 1 K m

for 0 < k < m,

where

P {M 1 = n} = P {M 1 > n} - P{M1 n + 1}, forn= 1,2,3,..
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and according to Appendix A.3,

1, for n =1;

P{M1 ;> n < Pnai, for n = 2;

Pnal-nal, for n = 3;

Pnal-nal(Cnal)n- 3 , for n > 4.

This completes the derivation of the second performance metric.

4.4.3 Important Aspects of the Solution and the Consequences

This section assesses the computation time as a function of system parameters, fmax,

ed and Esmax' max

Computation time Tcomp required for evaluating the transition probabilities arises

from two subtasks. The first subtask is to evaluate the joint probability terms that

appear in the expressions for the transition probabilities. The second subtask is to

multiply these joint probability terms and sum them during the evaluation of the

transition probabilities. Total computation time equals computation time T(o up for

the first subtask plus the computation time TConP for the second subtask.

Computation time for the first subtask depends on the number of distinct joint

probabilities and is given by

Tco n N(k) E (k), (4.89)
k=1

where E (k) denotes the computation time of a k-joint probability and N (k) denotes

the number of k-joint probabilities required to evaluate the transition probabilities.

If the transition probabilities are derived according to the previous section, the value
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of N (k) satisfies (see Appendix A.6)

2 < N (k) < 2k + 1, for 1 < k < fax - 2, (4.90a)

max - 2 < N (fa - 1) < 5Eax - 4, (4.90b)

3max - 1 < N (emax) N ( 5ax - 2. (4.90c)

According to the appendix, the left inequalities are satisfied with equality if L =

0, a typical case for continuous transmission without any idle fill character. The

right inequalities are satisfied with equality if LS > 2ax - 2, a typical case for a

transmission with large number of idle fill characters or a bursty transmission with

long silent periods. The value of E (k) depends on a specific application. For example,

an exponential function, E (k) = ck for a constant c > 1, is a reasonable model for

computation time of a k-nested integration using a conventional approach [90, p. 161].

In that case, TcC(op in (4.89) becomes [54, eq. 0.113]

T(1)~~ P=Oe Cmax)corn max

which gives a computation time for the first subtask.

Computation time for the second subtask is dominated by time required to eval-

uate Pnal-nal. Hence,

O((edax)2(da + Eax)2),

T -= 
if flax = 0;

O mEax)2(eMax)2(max + emsax +mEax)

ifm+£ax m max
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Therefore, total computation time is

O((Emax)2(Emax + Emmax) 2 + Emaxc'Aax),

if E S 0;
camp - O((Eax)2(Eax)2(edax + Emax + Era)2

+f em C ff > m  1

max max - ma+ElxcEa),) if f ax m Eax -1

4.4.4 Elementary Examples

To illustrate our framework, we consider a simple example. The example involves

continuous transmission of binary symbols over the AWGN channel and the specific

settings for frame synchronization. Next, we describe these settings.

The transmitted data symbols, {Dj}, are IID binary-valued Bernoulli random

variables, equally likely to be -1 and +1. The length of each frame is uniform

over the set, {30, 31,..., 40}. We consider a continuous transmission, so that the

length of silence period is zero: Ls = 0. The marker is given by (ci,..., cs)

(+I, -1, +1, +1, +1, -1, -1, -1), which has good correlation properties [102].

The frame synchronizer decides whether a marker begins at index j by considering

two hypotheses: H1 and HO. Here, H1 denote the hypothesis that a marker begins at

index j, whereas Ho denotes the hypothesis that a marker does not begin at index j:

Hi : Xi = ci-j++ Ni, j ij < +7

j <i <+ 7.HO : Xi = Di +Ni, j Z i j 7

We consider AWGN channel, where {N1 } are IID standard normal random variables

(zero-mean and variance of one). The decision rule is to compare the correlation to

a threshold:

max Hi

V -^ ckXj+k-1 > rI,
k=1 Ho

where the threshold r/ is selected according to the Neyman-Pearson criteria to achieve
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Figure 4-14: The PMF of M characterizes the amount of time to correct frame syn-
chronization.

a target value, a, of probability of false alarm. For illustration, the target value is set

to be a = 1%. Using this setting, we can obtain the probability distribution and the

expected value of M, the duration (in terms of the number of MSS) to correct marker

acquisition.

We plot the PMF of M in Fig. 4-14. The expected value E {M} can be obtained

from the PMF or, alternatively, from the expression in (4.87). The expectation turns

out to be 3.87, meaning that on average the frame synchronizer passes by 3.87 markers

before making a correct decision of frame acquisition. A more comprehensive example,

which gives the performance as a function of the SNR, is given later in Section 4.5.3.

4.4.5 Proofs of the Key Theorems

To obtain the performance metrics derived in previous two sections, we need to eval-

uate the transition probabilities given in (4.85). This section outlines approaches to

derive these transition probabilities.
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d2 cs I D D2 l2  '-sD, ci ... c

i observed symbols E 1 observed symbol

observation begins here

(a) Sequence of symbols satisfying the condition {J 1  ji, Lg = E Ls = l

vi V2  V3  -- V
e isi- ariable

decision variables

decision vavaables

decision variables

(b) Blocks of length fax, each of which corresponds to a different f 1a-joint probability
term in the numerator

. D lc l" i c2 .. -

V1 V2 V3 --

eisn I
decision variables

decision variables

-" 1 -.-

decision variables

(c) Blocks of length efm  - 1, each of which corresponds to a different (fmax - 1)-joint
probability term in the denominator

Figure 4-15: Pictorial
equation (4.92)

representation of the MSSs helps to aid the interpretation of

Derivation for Pnal

Let max denote the maximum frame length and f'ax denote the maximum length of

silent transmission: La K a and L' E-ax. Let Li and Ls denote the length of the

frame and the length of silent transmission, respectively, of the MSS that contains
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the first observed symbol. We write

Pnai P {Vi J E R'}
e ax j=e1*j

fd= es=o ji=1

P{Vi:31 E Rc Ji jl, L- = E , L }S = f S

X P { Ji = ji I L d = Ef, L' = 01s x P { Ld = Ed} P {LS = fos ,

where each probability term inside the summation can be obtained as follows.

The probabilities P { Ld = Ed} and P {L' = f} are given by (see Appendix A.5)

0s + E { L} + nax

Ef{L} +E{L} +max

Io+E{Lj} + ax

E {Li}

J

)
P {L=f}.

P{LS fS

On the other hand, the conditional probability P { Ji1  L = f } is uni-

form over the length of the MSS, since the first observed symbol can be anywhere in

the MSS:

{d+es+e- ax

0,

for 1I < i< E + E + fm"ot- herax,

otherwise.

The conditional probability

P {V1:3 El R' l J1j, L d = Ed , Ls = f s}

for 1 < ji < em can be obtained by integrating the conditional joint probability

density function (pdf) over the region (Rc)jl.10 For ji ;> EmA' + 1, we obtain the

10The symbol Ai for a set A refers to the Cartesian product A x A x .. x A, where A appears
ji times.
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P { 0i=ed} =

P {J1 jil L = gLs = f s} =



conditional probability through the expansion:

P{V: Ji E Re: Ji = jiLg- , L = E}

= P {V1: V E I J1 ='I, L d = fEd , Ls = f}

xk f +P Vk E Rc Vk-f m +1: k-1 E Rc, _- Iji, L2 = fo d -- =fsl
kmax 0+001

= P {V ir: E m c Ji = ji, L = f d, Ls =s)

P {Vk-fm x+1:k E RcJ I - ji, Li -- fd, Ls- f }

k +1 P {Vk- m x+1:k-1 (E e Ji -- ji, Ld - fd, Ls - Eo

P1ax P { Vk: k+mm -i E Rc J = ji, Ld = f d, Ls - S1*11~0 0' 0 02~

P { Vk+1:k+em -1 E Rc I JC -- ji, Lg -=fd, Ls - fs

Apnal~jo9

x P {Vj1-i x+1:ji E Rc Ji = ji, Ld = Ed, Ls = C}. (4.92)

Equation (4.92) can be interpreted with the help of Fig. 4-15 as follows. The

condition {J 1 =d, L = f d, Ls = E } indicates that the observed symbols are the last

ji symbols of an MSS with length E' + f s + f , followed by E ax - 1 marker symbols

(see Fig. 4-15a). These observed symbols generate a total of Ji decision variables.

Each of the ji - Ex+ 1 terms in the numerator is a Eax-joint probability, and each

of the ji - mra terms in the denominator is a (Efm - 1)-joint probability." Different

terms in the numerator correspond to different segments of length Ef , which are

time-shifted versions of one another (see Fig. 4-15b). Similarly, different terms in the

denominator correspond to different segments of length f m - 1, which are also time-

shifted versions of one another (see Fig. 4-15c). In general, these joint-probability

terms need to be obtained numerically.12

1 1 We use the term k-joint probability to refer to a joint probability of k random variables.
12Each probability term in (4.92) can be obtained by integrating the conditional joint pdf of V'S

over the corresponding region.
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Derivation for Pdet

A similar approach to the previous section gives

Pdet P {V1 1 E Rc 1E R

~d es eode+ernaxmz >i:0ma
-d~ f~- s0 ji-

P{VI:j 1_1 E Rc, Vj, E R : J 1= ji, L = Ed , L = E}

x ( I ) P{L = }P{LB-L =E}.

The conditional probability for ji - 1 is given by

P{ V1:o E Rc, V1 E R| Ji 1, L2 = e , Ls =alj

- -P {V1 E R J, i= , Ld - Ed L} =

where the term on the right-hand side has already appeared during the evaluation of

Pnal. The conditional probability for 2 < ji f " can be written as

P { V1:_ ElC- Rc, V i i E R|I J j, L = f d , L- }

= V1:jj, E Rc | Ji = ji, L d = Ed , Ls = fEs}

(4.93)

The second probability term on the right-hand side has appeared during the evalua-

tion of Pna. The first probability has not appeared before and needs to be evaluated.

The conditional probability for ji > EAax m+ 1 can be written as
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P{Vi: j1 E Rc Vj, E R : Ji = ji, Li = fg, L= ts

31 { P Vk:k+ax-1 E c Ji ji, Li -- d, Lo = 1Jj 1 imaxo 0o 0

P {Vk+1:k+tfm -1 E kc Z Ji Ld -- ,

X P {VJi- r.+1 J1-1 E Rc, Vai E RI J1 ji L = s, L= s}

= Apnai(j1, f , fs) P {VJfern+i:Ji ERc I Ji = ji, L' = f , Ls = f }

SP{VJ1 +1:JiRc = ji, L = , L (4.94)

where all terms have already appeared in (4.92) during the evaluation of Pnai. 13

Derivation for Pnal-nal

A similar approach to the previous section gives

Pnal-nal P {VI: J2 E RC}

mrax £rnsax 0g 0 mtax mra mrax

EZE E EE
fd=i -O jJ= dlt=

P{VJ 2 Ec Jj, Ld = Eg, L = , Ld = fd LS = f }

fod~fo+max

x P{L -tI }P{L =Ef}.

13The first probability expression in the bracket is the last joint-probability term in the denom-

inator of Apna(ji, fd, fs) in (4.92). The second probability expression in the bracket is the last

joint-probability term in the numerator of (4.92).
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The conditional probability can be obtained using similar steps leading to (4.92),

resulting in

P{V1:j2 ER : J i, L d = e, Ls =E, Ld = f d LS = f s}

[2 P { Vk:k+ra 1 E c Ji L --= f d L ' --- Es, L d fd, L s = l

k=1  P {Vk+l:k+ei m-i E Rc | J i, Lg -- f d, Ls = f{, Ld = fd, Ls = f }

-Apnai-nal 01 0, ,1, 1

{Vj2-Q.+1:j2 E 7Zc J j1 , Ld = Ed Ls = s, Ld = Efd, L = Ef }, (4.95)

where j 2 = ji + m+ ±f+ ax -

Equation (4.95) can be interpreted with the help of Fig. 4-16 as follows. The

condition {J1 = ji, Ld = E, Ls = i, L= E , Ls = f'} indicates that the segment

of the observed symbols consists of (a) the last ji symbols of an MSS with length

E 0 + EI EIax, (b) all symbols of the next MSS with length E1 + Ef + Eax, and

(c) Eax - 1 marker symbols (see Fig. 4-16a). These observed symbols generate a

total of j2 decision variables. Each of the j2 -- Eax + 1 terms in the numerator is

a fax-joint probability, and each of the j2 -- terms in the denominator is a

(f ax - 1)-joint probability. Different terms in the numerator correspond to different

segments of length f x which are time-shifted versions of one another (see Fig. 4-

16b). Similarly, different terms in the denominator correspond to different segments

of length Onax - 1, which are also time-shifted versions of one another (see Fig. 4-16c).

In general, these joint-probability terms need to be obtained numerically.

By comparing Fig. 4-16 and Fig. 4-15, it will be apparent that most of the Eax-

joint probabilities and (Efax - 1)-joint probabilities in (4.95) have already appeared

in (4.92) for the evaluation of PnaI. The remaining joint probability terms need to

be evaluated, and these terms correspond to the segments near the boundary of the

MSSs. Hence, the effort to obtain Pnal-nal after we have obtained Pnal is minimal from

a numerical point of view.

1
4 Recall that J2 = ji + d + + tax when conditioned on J1 , Li = Ef, and Ls =f.
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the numerator
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1)-joint probability

Figure 4-16: Pictorial representation of the MSSs helps to aid the interpretation of

equation (4.95).
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Derivation for Pnal-det

A similar approach to the previous case gives

Pna-det P {V 1 : J2 -1 (E Rc VJ2 E RI

max ax0 0=1ax ma_ 1 ax

0 S 0S1 P{V 1 .J2-1 E Rc, VJ2 E R :

1 ji, Ld = d Ls = E, Ld = efd LS = fS}

x) P { L d = e} P {LS = E}

where the conditional probability can be obtained numerically from the expansion

below:

P{V1:j 2 1Rc, V ERZ : J =ji, L = , = L = E L

SApnai-nai(ji, o , , f )

V te2fma+1:j 2 1 Rc,V3 E R | Ji, L = , L= EE, LZ = J1 L }
= Apnai-nai(ji, E , , E , ) 

0 
I

X P { Vj-fma+ 1 .2-1 E2 Rc | JI =j, L
- PVJ2tm(±1J2 ~~c i -j 1 Lg~~ ~~sL~-Ed 5o EdLS = S Ld = E, L =0 1 L 0' Li II LS = fS}

-- P { (r.1aE RC I J1j, L d = d , Ls = fEs, Ld = Ef, Ls = f }(4.)1 1 1

(4.96)

for j2 ji + £ + f + Esax. All terms in (4.96) have appeared in (4.95) for the

evaluation of Pnal-nal." Hence, the effort to obtain pnal-det after we have obtained

Pnal-nal is minimal from a numerical point of view.

1 5 The first probability expression in the bracket is the last joint-probability term in the denomi-
nator of (4.95). The second probability expression in the bracket is the last joint-probability term
in the numerator of (4.95).
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Derivation for Cnal

We write Cnal as

Cnal = P {VJ2 +1:J 3 E 'c I VJ2-ma+ 2 :J 2 E Re}

ma emax max maxp{

d E E " PO{

1g 1~ 2=1q 2

VJ2-e m+2:J 3 E Rc Ld = f , Ls = fs, Ld = Ef, Ls = E}

VJ2-im +2:J 2 E Re IL = fd, Ls = f, Ld = Ef, Ls = e}

X P { Ld = Ef } P {LS =Ef } P { Li = df}P{i j

(4.97)

To simplify the index, we let Wj A Vj+J2eEmx+1 , for j > 1. Then, Cnal is given by

d d es

cnai =

d1 1 f =1 ~ 1 d 2 2-

P {W: J3 J2 +dm_ dR L , Ls = fs, Ld = Efd, Ls = E}

PW:m -1 C -cR LI I , LI = EfI L2

x P{LI = E}P{LI = ff }P {L

fL = f }

2 JP{L2 = f2J

(4.98)

The ratio of conditional probabilities in the summation can be obtained by expanding

the numerator using similar steps leading to (4.92): for the length n A Ed+fs+2a -

1,16

P { Wi:n

P {Wi 1 : m 1 E -Re I Ld = f d, Ls = fEs, Ld = f d, Ls = f }

- Acnai(tj, 1, 2f, 2) P{Wn-f m+1:n E Rc

Ld - E, LS = e, Ld = ed Ls 2C}, (4.99)

16 Recall that J3 J2 = T 2 =2 + f2s + emmax when conditioned on L2
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where Acnai(Ef, Ef, f', f') is given by

Acnai( ,d fs) -Acna1 )2 P { Wi _1 E R I Ld = fd, Ls = f, Ld = , Ls =}

P { Wk:k+i -1 E RC L d LS - , L - d Ls - fsJ

x fl max 1 1 - 1 2 2 2 2 (4.100)
.k1P{Wk+1: k+fm x--i E Rc __ L d __ =f, s d s

Equation (4.99) can be interpreted with the help of Fig. 4-17 as follows. The

condition {Ld = Ef, Ls = f, Ld = fd, L= E=} indicates that the segment of observed

symbols consists of (a) the last Ea -1 symbols from an MSS, (b) entire Ed+fs+fm

symbols from the next MSS, and (c) Eax - 1 marker symbols (see Fig. 4-17a). These

observed symbols generate a total of n decision variables. Each of the n - Em  + 1

terms in the numerator is a Efax-joint probability, and each of the n - Efax +1 terms

in the denominator is a (Eax - 1)-joint probability. Different terms in the numerator

correspond to different segments of length fmax, which are time-shifted versions of one

another (see Fig. 4-17b). Similarly, different terms in the denominator correspond

to different segments of length eax - 1, which are also time-shifted versions of one

another (see Fig. 4-17c). In general, these joint-probability terms need to be obtained

numerically.

A comparison of Fig. 4-17 and Fig. 4-16 shows that all f ax-joint probabilities and

(Emax - 1)-joint probabilities in (4.99) and (4.100) have already appeared in (4.95)

for the evaluation of Pnal-nal. Hence, the effort to obtain cnal after we have obtained

Pnal-nal is minimal from a numerical point of view.
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Derivation for cdct

A similar approach to the previous section gives

Cdet P {VJ2 +I:J 3 -1 E 7Zc Vj E RE VJ2 -fax+2:J 2 (E 'c}

era Mrnax mrax erax P{ id =7W7 Ld d SL= fS L d =£fd LS =f

C'kc 1 1 1 1~ 2 2 2P { Win_1 E Rc, Wn E )Z| Li =E, Li = ti L2 =2f i

e f O -O P { WI:. m -G1 E e Ld = ed, Ls = fs, Ld = d, Ls = f-}

xJ {L f} =f P { Ld = Ef } PLS = f},

(4.101)

where n 2 n(4 ) = E + + 2" - 1 and W A Vj+J2-flax+1. The ratio of

conditional probabilities in the summation can be written as

P {Wi:n_1 E RC, Wn E Rc I Ld = fd, Ls = f , Ld = fd) L = f }
1{W1: 1 27c 2 2 21~

P { Wi: f - _1 E RC I L d = Efd LS = f S, Ld f, L = E}

Acna (Ef, fs, E E { W L Ld = Ed Ls = J
malk 112 2) 1 1 2 2' 2 2J

P{Wn-e m+1-n E Rc = L ,Ls = [ LS = } , (4.102)

where all terms in the right-hand side of (4.102) have already appeared in (4.99) for

the evaluation of cnal-1 Hence, the effort to obtain Cdet after we have obtained cnal is

minimal from a numerical point of view.

17The first probability expression in the bracket is the last joint-probability term in the denomi-
nator of (4.100). The second probability expression in the bracket is the last joint-probability term
in (4.99).
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Figure 4-17: Pictorial representation of the MSSs helps to aid the interpretation of
equation (4.99).
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4.5 Applications to Time-Aware Networks

In this section, we illustrate applications of the first-passage-time distributions devel-

oped in Section 4.1-Section 4.4. We will consider three aspects of synchronization in

time-aware networks: synchronization of two clocks, synchronization of a network of

clocks, and synchronization of frames. Our main contributions in this this section are

" a characterization of time to synchronize a pair of clocks and a network of clocks

in terms of the average and the outage;

" applications of first-passage-time distributions to clock synchronization;

" applications of first-passage-time distributions to network synchronization; and

" applications of first-passage-time distributions to frame synchronization.

These applications demonstrate utility of our first-passage-time distributions.

This section is organized as follows In Section 4.5.1, we illustrate application of

our solution to clock synchronization. In Section 4.5.2, we illustrate application of

our solution to network synchronization. In Section 4.5.3, we illustrate application of

our solution to frame synchronization.

4.5.1 Calibration Time Between Two Clocks

To illustrate an application of first-passage-time problems that involve Brownian mo-

tion with polynomial drift, we consider a problem in synchronization of two clocks.

We will describe a problem statement, a system model, and a solution.

Problem Statement

Consider a pair of clocks in a synchronous network. These two clocks need to maintain

their times close to each other for coordination, communication, or other purposes.

One clock serves as a reference clock. The other serves as a slave clock, a clock that

will be calibrated to match the time of the reference clock. Suppose that, at time 0,

the two clocks are calibrated to have the same time, a requirement that is ideal but
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serves to give a best case analysis. We want to characterize the amount of time,

measured by the reference clock, until the two clocks are out of sync.

The problem in synchronization translates into the following mathematical for-

mulation. Let a random process Yt denote the time difference between two clocks,

where Yo = 0 (a perfect calibration) and t is time of the reference clock. Let an

interval (ay, by) denote a range of acceptable time differences, where ay < 0 < by.

Let a random variable Tay,by denote the amount of time until the two clocks are out

of sync: ay,by = inf {t > 0 : Yt ( (ay, by)}, a first passage time. We will call Tay,by

a calibration time because a clock needs to be calibrated at time T
ayby. We want to

summarize the probability distribution of tayby by a single number that captures an

essence of the calibration time.

Two questions remain for discussion: what is a proper model for Yt? and how

to characterize Tay,by by a single number? For the first question, we will model Yt

as a scaled Brownian motion with quadratic drift. For the second question, we will

characterize the calibration time in two ways: an average (one single number) and an

outage (another single number). We now discuss these questions in detail.

System Model

We model Yt as

Yt =eBt + '+4t + Pt2, t > 0,

where -, ', 4, and / are constants that depend on the clocks. Brownian motion

Bt represents a white frequency modulation noise. Constant o represents severity of

white frequency modulation noise. Constants ' and q represent phase and frequency

errors from the calibration at time 0. Constant ' represents aging effect. Our model

is a simplification of a general model, which accounts for other types of noise and

allows ', 4, and ' to be random variables [70] [16, Sec. 5.2; p. 250]. Our model is

reasonable when the frequency white noise is a dominant type of noise [46].
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Figure 4-18: A clock needs to be calibrated often if noise is large or if the maximum
allowable time difference is small.

Performance Measure

We characterize the calibration time from two perspectives: average and outage. The

average is defined to be the expectation E {f'ay, }, which gives us the mean calibration

time or the average duration until the slave clock needs to be calibrated. The outage

depends on a parameter 0 < p < 1, where p is a target for the probability that the

time differences remain in an interval (ay, by). The outage at level p is defined to be

time to such that P {'ay,by > to} = p. The outage tells us to calibrate the clock at

time to if we want to be 100p-percent confident that the two clocks are in sync. The

average and the outage are obtained numerically from the PDF of Tay, by

Numerical Examples

We set ' = 0 because of a perfect calibration at time 0 and set q', ', -, ay, and by to

typical values for certain atomic clocks: q = 1 ns/day, and ' = 2.37 x 10-2 ns/day2

(or 10-3 / year) (for MASER standard; see Table 2.1), and ay = -by (a symmetric

145



2
2=40

0.99- -

a 240

-- 8

- 0.95-

Ce

S 0.9 15 20 25 30 35

time (day)

Figure 4-19: A clock with large noise (a2 , in ns2 /day) is likely to lose synchronization
with the reference clock.

boundary) [84] [16, p. 292]. Typical values of a and b are 40 ns2 /day and 100 ns [84].

But we will vary o.2 and b in the numerical examples to show the effects of noise and

boundary. Using these typical values of the parameters, we characterize averages and

outages of the calibration time.

Averages of the calibration time appear in Fig. 4-18 as a function of severity o.2

of noise and the maximum allowable tirne difference by. For each curve with fixed

by, the mean calibration time decreases as a2 increases. This trend is consistent with

intuition: the slave clock needs to be calibrated more often if the clocks are more

noisy. On the other hand, for a fixed a2 , the mean calibration time increases as

by increases. This trend is also intuitive: the slave clock needs to be calibrated less

often if it is allowed to deviate more from the reference clock. For typical values of

o.a 40 ns2 /day adby =100 nthe aegecresuggests that the slave clock be
calibrated at day 46. This example summarizes the calibration time in terms of the

average.
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Another way to summarize the calibration time comes from outage curves or

complementary CDFs in Fig. 4-18. In the figure, the outage curves share a common

value of by = 100 ns but they use different values of o2 . Notice that each curve

is a decreasing function of time. This trend is consistent with intuition: as time

progresses, the clocks are less likely to remain in sync. When o.2 decreases, the curve

moves away from the y-axis. This trend is also intuitive: the slave clock needs to be

calibrated less often if the clocks are less noisy. For a typical value of a 2 = 40 ns 2 /day

and for a level p = 0.9, the outage curve suggests that the slave clock be calibrated

at day 30. Outages and averages are applications of our first passage time problems

to synchronization.

4.5.2 Calibration Time in a Network

To illustrate an application of first-passage-time problems that involve multi-dimensional

Brownian motions with polynomial drifts, we consider a problem in network synchro-

nization. We will describe a problem statement, a system model, and a solution.

Problem Statement

Consider a network that consists of n clocks. These clocks need to maintain the

absolute time close to a reference clock, for coordination, communication, or other

purposes. Suppose that, at time 0, the n clocks are calibrated to have the same time

as the time at the reference clock, a requirement that is ideal but serves to give a best

case analysis. We want to characterize the amount of time, measured by the reference

clock, until k out of n clocks are simultaneously out of sync with the reference clock.

Here, k depends on a specific application and ranges from k = 1 (the most restricted

requirement on time synchronism) to k = n (the least restricted requirement on time

synchronism). Parameter k controls how stringent the synchronization requirement

is.

The problem in synchronization translates into the following mathematical formu-

lation. For each i = 1, 2,..., n, let a random process Y(') denote the time difference
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between clock i and the reference clock, where Y) = 0 (a perfect calibration) and t

is time of the reference clock. Let an interval (ay, by) denote a range of acceptable

time differences, where ay < 0 < by. For each k = 1, 2,..., n, let a random variable

Tay,by (k) denote the amount of time until any k clocks are simultaneously out of sync:

Tay,by (k)

=inft > 0 : 237 C {1, 2 ... n} such that | | = k and Vj E j Yj (ay, by),

which is a first passage time. We will call Tay,by (k) a calibration time because the

network needs to be calibrated at time Tay,by (k). Similar to the case of two clocks in

Section 4.5.1, we want to summarize the probability distribution of Tay,by (k) by the

average and the outage, which capture the essence of the calibration time.

System Model

We model Y(i) as

Y(' = o-B(' + q+e +y2 t ;> 0, i = 1, 2, ... ,In,

where o, 6, q, and /Iy are parameters of clocks, defined in Section 4.5.1, and where

B1, B, .. B(") are independent Brownian motions representing white frequency

modulation noise. Our model is reasonable when the white frequency modulation

noise is a dominant type of noise [46] and when n clocks are the same type, so the

coefficients in the quadratic drifts are identical.

Performance Measure

Similar to Section 4.5.1, we characterize the calibration time from two perspectives:

average and outage. The average is defined to be the expectation E {Tay,by (k) }, which

gives us the mean calibration time or the average duration until k out of n clocks are

simultaneously out of sync. The outage depends on a parameter 0 < p < 1, where p

is a target for the probability that the time differences remain in an interval (ay, by).
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The outage at level p is defined to be time to such that P {Tay,by (k) > to} = p. The

outage tells us to calibrate the network at time to if we want to be 100p-percent

confident that n - k + 1 clocks or more stay in sync with the reference clock. The

average and the outage are obtained from the CDF of T
ay,by (k) for k = 1 (see (4.67)

or (4.69)). For the other cases of k, we bound the average and the outage using the

bounds on the CDF (see (4.68) or (4.70)).

Numerical Examples

We set ' = 0 (a perfect calibration at time 0) and set q 1 ns/day, p = 2.37 x

10-20 ns/day2 , and by = -ay = 100 ns (see a justification of these parameters in

Section 4.5.1). We will vary a.2 around its typical value that appears in [84], to show

the effects of noise. Using these parameters, we characterize averages and outages of

the calibration time.

In the figures that we will plot, the parameters n and k vary to reflect different

characteristic of networks. The number of clocks in the network is set to n = 4, 20, 100

to represent a small, medium, and large networks, resepctively. The number of clocks

that are allowed to go out of sync in a network of size n is also varied. We will

set k = 1, k = 2, k = [n/2], k = n to represent various degrees of requirement on

synchronism, where [xl denote the smallest integer that is greater than or equal to

x. For k = 1, the synchronization occurs immediately when k = 1 out of n clocks

is out of sync with respect to the reference clock. The value of k = 1 gives us the

most conservative way to synchronize the network. For k = 2, the synchronization

occurs when k = 2 out of n clocks are simultaneously out of sync. For k = [n/2], the

synchronization occurs when at least half of the clocks are simultaneously out of sync.

For k = n, the synchronization occurs when all of the clocks are simultaneously out

of sync. For the case that k = 1, we will have the curves for the expectation and the

outage since we have exact expression for the CDF of the calibration time. For the

case that k > 2, we have an upper bound and a lower for the average calibration and

an upper bound and a lower bound for the outage. Figures 4-20-fig:mean:kn shows

the plots for k = 1, 2, [n/21, n, respectively.
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Figure 4-20: For k = 1, mean time to calibrate the network decreases as the network
size n increases and as the clock noise a 2 increases over a typical range.

For k = 1, the mean calibration time appears in Fig. 4-20 as a function of severity

j
2 of noise and the number n of clocks. For a fixed a 2 , we observe from the figure

that as n increases, the mean calibration time decreases. This finding is intuitive: as

the number of clocks in the network increases, it is more likely for any (k = 1) of

the clocks to become out of sync, resulting in short calibration time. For a fixed n,

we observe from the figure that as a2 increases, the mean calibration time decreases.

This finding is also intuitive: when the clocks become more noisy, it is more likely

for any (k = 1) of the clocks to become out of sync, resulting in short calibration

time. The figure gives insight into the calibration of the network for k = 1, the most

conservative requirement for synchronization.

For k = 2, the upper bound and lower bound for the mean calibration time appear

in Fig. 4-21 as a function of severity a 2 of noise and the number n of clocks. The

bounds provide insight into the mean calibration time and are reasonably close to
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Figure 4-21: For k = 2, the upper bound and the lower bound on the mean time to
calibrate the network give insight into how often a network of n clocks needs to be

calibrated. The mean time decreases as the network size n increases and as the clock

noise o increases over a typical range.

each other. For example, the maximum difference between the upper bound and the

lower bound over the range of typical o2 in the figure is less than six days, giving us

a relatively precise range of the mean calibration time. Using these bounds, we can

draw conclusions about the general trends of the mean calibration time.

From Fig. 4-21, at each a2 , we observe that as n increases from 4 to 20 and to 100,

the bounds decrease. The bounds for different n's are not overlapped, implying that

the mean calibration time must also decrease when n increases from 4 to 20 and to

100. This finding about the mean calibration time is intuitive: as the number of clocks

in the network increases, it takes short time for two clocks to become simultaneously

out of sync. For a fixed n, we observe from the bounds that in general as cr2 increases,

the mean calibration time decreases. This finding is also intuitive: when the clocks
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Figure 4-22: For k =Fn/2], the larger the network size, the more difficult for half of
the clocks to simultaneously become out of sync.

become more noisy, it is more likely that any two clocks become simultaneously out

of sync, resulting in short calibration time. The bounds for the mean calibration time

provide insight into the calibration time of the network.

For k = |n/2], the upper bound and lower bound for the mean calibration time

appear in Fig. 4-22 as a function of severity o.2 of noise and the number n of clocks.

The bounds provide insight into the mean calibration time and are reasonably close

to each other. For example, the maximum difference between the upper bound and

the lower bound over the range of typical o.2 in the figure is less than six days, giving

us a relatively precise range of the mean calibration time. Using these bounds, we

can draw conclusions about the general trends of the mean calibration time.

From Fig. 4-22, at each o.2 , we observe that as n increases from 4 to 20 and to

100, the upper bound and the lower bound increase. This finding about the bounds is

intuitive: as the number of clocks in the network increases, it takes long time for half
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Figure 4-23: For k = n, the larger the network size, the more difficult for all of the
clocks to simultaneously become out of sync.

of the clocks to become simultaneously out of sync. For a fixed ni, we observe from

the bounds that in general as u2 increases, the mean calibration time decreases. This

observation implies that, for the range of u2 in the figure, the noisy the clock, the

more likely that half of the clocks become simultaneously out of sync. The bounds

for the mean calibration time provide insight into the calibration time of the network.

For k - ni, the upper bound and lower bound for the mean calibration time appear

in Fig. 4-23 as a function of severity J2 of noise and the number n of clocks. The

bounds provide insight into the mean calibration time and are reasonably close to

each other. For example, the maximum difference between the upper bound and the

lower bound over the range of typical a2 in the figure is less than ten days, giving us

a relatively precise range of the mean calibration time. Using these bounds, we can

draw conclusions about the general trends of the mean calibration time.

From Fig. 4-23, at each a2, we observe that as n increases from 4 to 20 and to
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100, the bounds increase. The bounds for different n's are not overlapped, implying

that the mean calibration time must also increase when n increases from 4 to 20 and

to 100. This finding about the bounds is intuitive: as the number of clocks in the

network increases, it is more difficult for all of the clocks to become simultaneously

out of sync, resulting in long calibration time for a large network. For a fixed n,

we observe from the bounds that in general as a2 increases, the mean calibration

time increases. This finding is at first surprising but arises from the range of 0'2

that appears in the figure. For this range of o 2 , clocks that have been out of sync

have returned to become in sync, due to increasing volatility of the time error (as

u2 increases). As a result, we observe that the mean calibration time increases as

02 increases from 0,2 = 10 to a 2 = 100. When a 2 approaches infinity, the mean

calibration time approaches zero.18 Hence, at some a 2 larger than 100, we expect the

mean calibration time to decrease. Again, the bounds for the mean calibration time

provide insight into the calibration time of the network.

Another way to summarize the calibration time comes from outage curves or

complementary CDFs in Figs. 4-24-4-27. In the figure, the outage curves and the

bounds share common values of by = 100 ns and a 2 = 40 ns 2 /day but they use

different values of n, the number of clocks in the network. Notice that for n = 1,

we provide the outage curve (see Fig. 4-24). For other values of n, we provide upper

bounds and lower bounds for the outage curves (see Figs. 4-25-4-27). We now discuss

each figure in detail.

For k = 1, the outage curve appears in Fig. 4-24 for different values of n, the

number of clocks in the network. For a fixed n, the curve is decreasing as time

increases. This finding is intuitive: as the time progresses, the probability that the

network remains in sync decreases. As n increases from 4 to 20 and to 100, the

outage curves move toward the y-axis. This finding is consistent with intuition: as

the number of clocks increases, the probability that the network remains in sync

decreases. The outage curves give us insight into how often clocks in the network

need to be calibrated.

18 This statement is a consequence of continuity of measure [99, Thm. 1.19(d)].
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Figure 4-24: For k = 1, time to calibration from the standpoint of outage is consistent
with time to calibration from the standpoint of average in Fig. 4-20: the larger the
network, the shorter the time to calibration.

For k = 2, the upper bounds and lower bounds for the outage curves appear in

Fig. 4-25 for different values of n. The bounds are reasonably close to each other.

For example, the maximum difference between the upper bound and the lower bound

over the range of typical o2 in the figure is less than two days, giving us a relatively

precise range of calibration time (from the perspective of outage probability). As n

increases from 4 to 20 and to 100, the bounds move toward the y-axis. This finding

is intuitive and arises from the similar reason as for the case of k = 1 in Fig. 4-24:

the more clocks, the more likely that two of them become out of sync at a given

time. The bounds for the outage curve provide insight into the calibration time of

the network.

For k = ~n/2], the upper bounds and lower bounds for the outage curves appear in

Fig. 4-26 for different values of n. The bounds are reasonably close to each other. For
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Figure 4-25: For k = 2, time to calibration from the standpoint of outage is consistent
with time to calibration from the standpoint of average in Fig. 4-21: the larger the
network, the shorter the time to calibration.

example, the maximum difference between the upper bound and the lower bound over

the range of typical a.2 in the figure is less than two days, giving us a relatively precise

range of calibration time (from the perspective of outage probability). As n increases

from 4 to 20 and to 100, the bounds move away from the y-axis. This finding is

intuitive since the network is calibrated when half of the clocks are simultaneously out

of syne: the more clocks, the more difficult for half of them to become simultaneously

out of sync at a given time. The bounds for the outage curve provide insight into

the calibration time of the network.

For k = n, the upper bounds and lower bounds for the outage curves appear in

Fig. 4-27 for different values of n. The bounds are reasonably close to each other.

For example, the maximum difference between the upper bound and the lower bound

in the figure is less than two days, giving us a relatively precise range of calibration
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Figure 4-26: For k =_ [n/2~], time to calibration from the standpoint of outage is
consistent with time to calibration from the standpoint of average in Fig. 4-22: the
larger the network, the longer the time to calibration.

time (from the perspective of outage probability). As n increases from 4 to 20 and

to 100, the bounds move away from the y-axis. This finding is intuitive since the

network is calibrated when all of the clocks are simultaneously out of syne: the more

clocks, the more difficult for all of them to become simultaneously out of sync at a

given time. The bounds for the outage curve provide insight into the calibration time

of the network.

4.5.3 A Processing Delay During the Synchronization Phase

To illustrate our analytical framework developed in Section 4.4, we consider the sim-

plest scenario, involving continuous transmission of binary symbols over the AWGN

channel. These symbols constitute packets that nodes exchange during the synchro-

nization phase.
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Figure 4-27: For k =- n, time to calibration from the standpoint of outage is consistent
with time to calibration from the standpoint of average in Fig. 4-23: the larger the
network, the longer the time to calibration.

Case Study

Transmitted data symbols, { D}, are assumed to be IID and equally likely to take

value of -1 or +1. The length Lq of frame number i is uniform over the set,

Ifi, d. in + 1, . d . ix, and L' 0. The transmitter injects a marker with good

correlation properties into the beginning of each frame. The data and marker symbols

are converted into waveforms for transmission, which are impaired by AWGN.

The frame synchronizer decides whether a marker begins at index j by considering

two hypotheses. Let H1 denote the hypothesis that a marker begins at index j,
whereas H0 denotes the hypothesis that a marker does not begin at index j:

H1, Xi =ci-jg1+ Ni, (i = jj 1..., j+ e"a - 1)HI ax

HO XID i iiJ 1..~ -)
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Here, {Ni} are IID Gaussian random variables with zero mean and variance o2 . We

eliminate the cases where there is a mixture of data and marker symbols from our hy-

pothesis, since segments of well-designed markers should mimic a sequence of random

data [24,25].

We will employ a decision rule based on soft correlation with the decision function

gi in (4.80). The threshold for decision rule, denoted by rq, is chosen according to the

Neyman-Pearson criteria [10, p. 216]. Hence, our decision rule becomes

max Hi

V-LCkXj+k-1 I T
k=1 Ho

Selection of Threshold

Let the random variable H E {H1, Ho} denote the true hypothesis. Using Neyman-

Pearson criteria, we select a threshold 17 such that the probability of false alarm equals

a desired level, a:

P {Vj > r/I H = Ho}a. (4.103)

We now evaluate the false alarm probability as follows.

Without loss of generality, we will set the time index j = 1. Under hypothesis

H = Ho, decision variable V1 involves a sum of IID Bernoulli random variables,

Zafix ckDk, and a sum of normal random variables, ZiY ckNk. The probability

of false alarm at a given threshold r/ equals [25, eq. (51)]

1 max m, _m + 2k
P{Vj7 > rI H = Ho} = m max) Q (Y - ema I

2makx.m

where Q(x) is Gaussian Q-function [91, eq. 2.1-97]. We then obtain r by numerically

solving the nonlinear equation (4.103) using a technique such as the bisection method.

The probability of false alarm for various o2 is depicted in Fig. 4-28.

Remark 1. The bisection method requires an initial point 1 o to begin the iteration.

One approach to select a good initial point is to approximate Vj by a Gaussian random
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Figure 4-28: The threshold is selected to achieve the probability of false alarm at a
desired level, a. The figure shows a = 10-2 and the marker length f = 16.

variable. This approximation is motivated by the central limit theorem. Mathemati-

cally, for large E ' the false alarm probability, P {Vj > y| H = HO }, is approximated

by

Q(ma e(1+r2))

Under this approximation, the initial point is given by

7o - Q- 1 (a)v E;ax(1 + o 2),

which is easy to obtain using standard mathematical packages. The Gaussian approx-

imation turns out to be very good (Fig. 4-29), implying that the bisection method will

terminate in a few steps.

Remark 2. To obtain the transition probabilities, we follow the approach described in
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Figure 4-29: The Gaussian approximation can be used to approximate the probability
of false alarm (a2 = 1).

Section 4.4.5. Each joint probability term in that section is obtained by conditioning

on data symbols, if applicable, and then integrating the joint pdf of the Gaussian ran-

dom variables over the appropriate region, defined by the threshold. 9 As an example,

a joint probability term that needs to be evaluated is

P {W1 : rhW2 <_ l,.. WM < 1}

where

max

W = ck(Dk+j-1 + Nk+j-1)
k=1

"If the joint probability term is generated by the marker symbols only, then the conditioning is
unnecessary.
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Figure 4-30: The expected number of MSSs required for a correct acquisition measures
the amount of time to complete frame synchronization.

To evaluate this probability, we write

P {W1 rW 2 < rl, ... , We r}

SE{ P{W 1 < T, W2 < ,.. .,We r/ : D1, D2 ... ,D 2 r-1}},

where the expectation is over the data symbols {Dj}. Conditioned on {Dj = dj} for

dE {--1,+1}, the random vector (W 1 , W2 ,... We ) has a multivariate normal

distribution, whose CDF can be obtained efficiently using, for example, the method

in [47].20
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Figure 4-31: As the duration m to acquire the marker increases, the probability of
correct acquisition within the given duration increases.

Discussion

For the purpose of illustration, we consider a false alarm level of a = 1%, a marker

of length fm. = 8 and a frame length Ld that is uniform on {30, 31, .. ., 40}. Markermax I

symbols are selected to be (ci, . . . , cs) - (+1, -1, +1, +1, +1, -1, -1, -1) to ensure

good correlation properties [102]. Using these parameters, we evaluate the perfor-

mance metrics in Section 4.4.2.

Figure 4-30 shows the expected time to complete the marker acquisition as a

function of the SNR, 1/U 2 . The expected time decreases with an increase in SNR as

one would expect and reaches an asymptotic value, which is slightly greater than 1 in

a high SNR regime. This behavior can be attributed to the fact that the errors can

still occur due to the data symbols replicating the marker. To eliminate this type of

20 When e is large, the conditioning on {Dj} may be too time-consuming. In that case, one
may consider appropriate approximations.

2 1Note that changing the value of a will affect the asymptotic value.
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Figure 4-32: The PMF of M is obtained from the performance metric P {M < m}.

decision error, the transmitter must modify the sequence of transmitted symbols, for

example, using an approach similar to [7, p. 88].22

Figure 4-31 shows the probability of correct acquisition within a given duration,

measured in terms of the number m of MSSs. For the purpose of illustration, we

consider m = 1, 2, 4. The probability of correct acquisition increases with m as one

would expect, indicating that the longer the duration spent to detect a marker, the

more likely that the marker acquisition will be correct. The probabilities P { M < m}

in the high SNR regime are related to the events of data symbols replicating the

marker. In Figs. 4-30-4-31, we also report the simulation results, which confirm the

validity of our analysis.

The performance metric P {M < m} can be used to obtain the PMF of M as well

as the moments of M. For illustration purposes, we plot the PMF of M in Fig. 4-

32 and the standard deviation of M as a shaded area around E {M} in Fig. 4-30.23

22This approach, however, can cause problems in some cases [43].
231t is more convenient to obtain E {M} through the closed-form expression in (4.84) although
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Notice in Fig. 4-32 that the PMF of M for low SNR is spread, thus resulting in a

large standard deviation as can be observed in Fig. 4-30.
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E {M} can also be obtained from the pmf.
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Chapter 5

Conclusion

In this research, we solve first-passage-time problems and demonstrate the applica-

tions to network synchronization. The main results of this research are divided into

five components, which address the five objectives of this thesis. In the first compo-

nent, we derive the probability distribution of the first time that Brownian motion

with quadratic drift exits from a boundary consisting of two constants. In the second

component, we derive the probability distribution of the first time that Brownian

motion with polynomial drift exits from a boundary consisting of two constants. In

the third component, we derive and bound the probability distribution of the first

time that a multi-dimensional Brownian motion with polynomial drift exits from a

boundary described by an open set in the Euclidean space. In the forth component,

we derive the probability distribution of the amount of time to achieve frame syn-

chronization using the framework of first passage time. In the fifth component, we

illustrate applications of our first-passage-time distributions to time-aware networks.

The five components of this thesis are summarized below.

Brownian Motion with Quadratic Drift

We solve first-passage-time problems in which random process is Brownian motion

with quadratic drift and the boundary consisting of two constants. Our goal is to ob-

tain the probability distribution of the first time that Brownian motion with quadratic
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drift crosses a two-sided boundary.

Our approach is to use transformation methodology. Brownian motion with

quadratic drift is not a time-homogenous Markov process, necessitating a new tech-

nique to solve the first-passage-time problem. We apply five types of transformations:

transformations of the probability measure, the time, the stochastic integral, the con-

ditional expectation, and the unconditional expectation. In the derivation, the most

challenging step is an evaluation of a conditional expectation that is a functional of a

Brownian motion. To address this challenge, we transform the conditional expecta-

tion into an expectation, using an integral transform. Our approach yields an explicit

expression of the first-passage-time distribution.

Our solution to the first-passage-time problem is special because few of first-

passage-time problems are solved explicitly. The solution covers the case of Brownian

motion without drift and Brownian motion with linear drift as special cases. As

a simple extension, we provide the probability distribution for the case of a scaled

Brownian motion with an arbitrary initial position. This variation is solved by a

reduction to the problem of Brownian motion with quadratic drift. We expect our

work to have practical utility because first-passage-time problems appear in many

disciplines.

Brownian Motion with Polynomial Drift

We solve first-passage-time problems in which random process is Brownian motion

with polynomial drift and the boundary consists of two constant barriers. The goal

is to obtain the probability distribution of the first time that Brownian motion with

polynomial drift crosses a two-sided boundary.

Our approach is to use transformation methodology. Like the case of quadratic

drift, Brownian motion with polynomial drift is not a time-homogenous Markov pro-

cess, making this first-passage-time problem difficult. Given that a quadratic drift is

a special case of polynomial drift, the five type transformations still apply. In par-

ticular, we use transformations of the probability measure, the time, the stochastic

integral, the conditional expectation, and the unconditional expectation. The dis-
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tinction from the quadratic drift is at the last two transformations, which need to be

adjusted for the polynomial drift. Our approach yields an expression of the PDF.

The main results on polynomial drift have several consequences. A class of poly-

nomials is a dense subset of a class of continuous functions. As a consequence, we

are able to solve first-passage-time problems for a class of drifts that contain not only

polynomials but also elementary functions such as the sinusoidal, exponential, loga-

rithmic, and square-root functions. In addition, we extend the results to the cases of

one constant barrier, a moving barrier, and a scaled Brownian motion starting from

an arbitrary location. We verify our methods by comparing our PDFs to the known

PDFs for the square-root boundary. Given a large class of drifts that can be solved,

we expect our work to have practical utility.

Multi-Dimensional Brownian Motion with Polynomial Drift

We solve first-passage-time problems, in which random process is a multi-dimensional

Brownian motion with polynomial drift and a boundary that belongs to a family of

open sets in the Euclidean space. The goal is to derive and bound the probability

distribution of the first time that multi-dimensional Brownian motion with polynomial

drift crosses a boundary.

Our approach to obtain and bound the probability distribution is to use reduction

and ordered statistics. In particular, we reduce a mute-dimensional problem to sev-

eral one-dimensional problems that involve Brownian motion with polynomial drift.

Then, we relate the first passage time to the ordered statistic that depends on the

shape of the boundary. These order statistics are not identically distributed but their

distributions are straightforward to derive. Our approach yields a lower bound and

an upper bound for the probability distribution of the first passage time.

The strength of our solution is that the bounds are simple to evaluate even for

a random process with large dimension. In certain shape of the boundary, the lower

bound equals the probability distribution of the first passage time. In general, the

first-passage-time problems involving multi-dimensional Brownian motion is difficult

to solve. Our solutions give insight into the probability distribution of the first passage
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time.

A Discrete-Time Process With Certain Correlations

We solve first-passage-time problems in which random process is a discrete-time pro-

cess with a certain correlation and the boundary is a constant. Our goal is to obtain

the explicit expressions for the two most important performance measures for frame

synchronization: the expected time to complete frame synchronization and the prob-

ability of correct acquisition within a given duration. The first metric is suitable for

characterizing performance of transmission systems without delay constraints, while

the second one is suitable for systems with delay constraints. The derivations of these

explicit solutions turn out to involve probabilities and conditional probabilities of first

passage times.

Our approach to obtain the performance metrics is to decompose the amount of

time to correct acquisition as a random sum and apply rules of probability (such as

Bayes' theorem, the law of total probability, and the law of large number), stopping

time, and renewal theory. The strength of our approach is that these metrics can be

expressed in terms of few parameters, which we refer to as the transition probabilities.

The transition probabilities depend on the SNR, the decision rule, and the fading

conditions. We discuss approaches to obtain the transition probabilities. Once the

transition probabilities have been obtained for a given SNR, they can be used to

evaluate the performance of a frame synchronization system.

Our framework yields the explicit expressions for performance metrics of frame

synchronization. The results give insight into frame synchronization for both the

continuous transmission of variable-length frames and bursty transmission of frames.

Applications to Time-Aware Networks

We demonstrate applications of first-passage-time distributions that we developed

to network synchronization. We consider three examples: a synchronization of two

clocks, a synchronization of a network of clocks, and frame synchronization.

170



Our approach to illustrate the applications of first-passage-time distribution is to

express key quantities in a time-aware network as first passage times. For example,

the time until the network loses synchronization is the first passage time of a multi-

dimensional random process. The time until a node correctly acquires a packet is a

function of the first-passage-time distributions for a discrete-time process. Since we

know the probability distributions of the first-passage-time (from the previous four

components of this research), we are able to derive the performance measures of these

key quantities in time-aware networks.

The results give insight into synchronization time in a networks. We consider three

aspects of synchronization in a time-aware network: synchronization of two clocks,

synchronization of a network of clocks, and frame synchronization. In the case of two

clocks, we plot the average and the outage of the calibration time as a function of key

parameters such as severity of clock noise and the maximum allowable time error. In

the case of the network of clocks, we plot the average and the outage of the network

calibration time as a function of key parameters such as severity of clock noise and the

size of the network. In the case of frame synchronization, we plot the average time to

achieve frame synchronization and the probability to achieve frame synchronization

within a given duration, as a function of key parameters such as the SNR. We provide

interpretations of the results from these plots. The results from this component of

the research provide valuable insights into the performance of time-aware networks

and can serve as a guideline for the design of clocks and a deployment of networks.

In conclusion, this research solves various first-passage-time problems. The first-

passage-time problems are difficult to solve since the problems often involve an infinite

set of dependent random variables. Here, we are able to solve the first-passage-time

problems for explicit solution for the Brownian motion with quadratic drift, for a

special case of multi-dimensional Brownian motion with polynomial drift, and for

the discrete time process with certain correlations. In the other first-passage-time

problems that we solve here, we are able to bound the probability distribution (for the

general case of multi-dimensional Brownian motion with polynomial drift) and able
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to obtain the probability distribution with a combination of analytical and numerical

methods (for the case of Brownian motion with polynomial drift). The class of first-

passage-time problems that we solve in this research is large, covering various types

of random processes and boundaries. We demonstrate applications of these first-

passage-time problems to network synchronization, as an illustration. We expect our

contributions to be useful and have practical utility since first-passage-time problems

occur in many fields.
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Appendix A

Other Important Proofs For the

Discrete-Time Process

A.1 Justification of Equation (4.83)

To simplify the analysis, we assume, without loss of generality, that attempts to

perform frame synchronization continue indefinitely even after a correct marker ac-

quisition. This assumption implies that Mi is well-defined for any i > 1.

To prove the claim, we begin by defining auxiliary random variables:

if attempt i yields a correct acquisition;

otherwise,

for i > 1, and

if event S occurs;
(A.1)

otherwise.

Hence.

K = inf{i > 1 : Yj = 1}. (A.2)
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Let SK A M M1 + M2 + + MK. Then, similar to the proof of Wald's identity,

E{SK} (E{S1}}
k=1

cc k
(b) 5 {}

k=1 i=1
oo oo

Mc EJ E { M1K=k}

i=1 k=i

E f{MilK>i}, (A.3)

where (a) is a summation over disjoint regions, (b) is due to the definition of Sk and

linearity of expectation, and (c) is due to [99, Corr. to Thm. 1.27]. To show that Mi

and 1{K_,l are independent for any i, we write

IK><i = 1 - 1{<i_1}

= 1 - 1{Y1=1 or Y2=1 or ... or Yi_1=1} (from eq. (A.2))

which shows that IIK;>iJ is a function of Y A (Yi, Y2 ,..., Yi- 1). Random vector Y is

independent of Mi because different acquisition attempts examine disjoint MSSs. 1 A

continuation of (A.3) gives

E {SK} = E {Mi} E { 1{K>il} (independence)

00

- E {M1} P {K > i} (identically distributed)

SE {M 1 } E {K},

which proves the claim.2

'In other words, Y and Mi are independent because past decisions, which occurred at discrete
times 1 to i - 1, do not affect the future outcome at time i.

2 Note that the claim is not a direct application of Wald's identity [38, p. 369] because we do not
require K to be a stopping time, do not require E {K} < oc, and do not require E {Mi} < oc.
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A.2 Probability of Correct Acquisition

The probability of correct acquisition is given by

PcAcq - P {V1:ji1 E Rc Vji E RJ}

= P{Vi:ji1 E Rc, V E R}

P {Vi: ji-1 E RC Vji E R}

=Pdct

+ P{Vi:J2 -1 E RC,VJ2 E R}
Pnal-det

+ P{Vi:i 1 ERc,Vji ER}
i=3

Terms in the infinite sum can be simplified into

P{Vi:j _1 E RcVji E R}

- P {Vi E J2 Rc

Pnal-nal

X> P {VJ+1:JJk+1

(disjoint union)

P{Vj_1+1- Ji-1 e Re,Vi c R : Vji-_em-.+2.j_ 1 E kc

Pnal-nal (cnai) cdet (Time invariance),

where Hl.(-) - 1, (cnal) A 1, and the parameters Cnal and Cdet are defined in (4.85).

Hence,

00

PcAcq =Pdet + PNal-det + >E pNalnai (cna) 1i 3 Cdet.

If cnai =1, then cdet = 0 and PcAcq - Pdet + Pnal-det. Otherwise, the infinite sum is

a geometric series. Putting both cases of cnal together yields (4.86).
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A.3 Expected Time to Acquire a Marker

The expected time to acquire a marker equals

00

00

E { = P {M1 i}
i=2

since M1 > 1. The probability in the

{M1 > i} = {V1:j_1 E Rc). Hence,

P{M1 > 2} =

P{M1 31 =

infinite sum can be obtained by observing that

P {V1.ji EC Rc = Pnal

P {V1: J2 E Rc} = Pnal-nal,

and for i > 4,

P {M 1 > i}

i=2

P{fV1 : J2 C 7Z'} X J7JP { VJk±1: Jk+1 (EC I VJk -ema,+2 :Jk E Z
k=2

= Pnal-nai(cnal) 3 (Time invariance).

Hence

00

EB {M} 1 + Pnal ± Pnal-nal + I:Pa-a Ca i3

i=4

which simplifies into (4.87).

The expression for E { M1 }, which involves three cases, can be understood intu-

itively as follows. The condition 0 < pNna < 1 means that with non-zero probability

a marker detector examines more than two MSSs. The condition Cnal 1 implies that

if the marker detector examines more than two MSSs, then the marker detector will

never terminate. The condition 0 < pNa1na < 1 together with cnal = 1 in the third case
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implies that M1 is unbounded, resulting in E {M1 } - o. The condition Pnai-nal = 0

in the second case implies that with probability one the marker detector terminates

within one MSS or two MSSs, resulting in the expected duration E {M1 } between

1 and 2 inclusively. The remaining case occurs when the detector terminates after

examining a finite number of MSSs, resulting in 1 < E {M} < oc.

A.4 Justification of (4.88)

The base case (4.88a) is obvious. The recursive case (4.88b) proceeds as follows:

-(k + 1, m)
00

=EP{M1+ M2+'- + Mk + Mk+1 M : Mk+1= n}P{Mk+1 -n

n-1
DO

=ZP{M1+ M2 +---+Mk < m-n}P{Mk+1=nl
n-1

m-k

= Sy(k, m - n)P {M1 = n},
n=1

where we have used the fact M1 + M2 + -- -+ Mk > k in the last equation.

A.5 Justification of (4.91)

We will investigate properties of a generic arrival process, which include the marker

arrival process {J 2 } as a special case. Then we will justify (4.91) through the properties

of this generic arrival process.

Consider an arbitrary arrival process with the interarrival times {Li + S} for

i > 1, where Li > 0, Si > 1, {Li} are IID, {Si} are IID, and {Li} and {Si} are

independent. As an example, Li is the length of a frame, and Si is the length of a

silent transmission plus the length of the marker. Suppose that we begin to observe

the arrival process at random time. Let Li. + Si. be the interarrival time containing

the beginning of the observation. We wish to obtain the PMF of Li..
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We use an argument based on renewal theory to write, for f > 0,

P{Li =} =

(L- + Sj)
l<i<n

lim fi -

(Li + Sj)
i=1

almost surely,

where the argument of the limit is the portion of time that gives rise to the event

{ L* = E}. Separating the summation in the numerator and introducing an auxiliary

random set,

1(E, n) - {i:1 < i < n and Li = }

into the expression give, almost surely,

Pf{Li- = } = lim
n--mo

E|I(,rn)| + Eier(,n) Si( I(Li + Sj)

fj~~~ + 1 (ennlE(iy ) Silim ( Ir(En) I 1(,n)|E )
n--mo nE" (Li + S )

which simplifies into

+ (limn-oc) In)I) limn--oc; Si)

lim- - j E 1 (Li + Sz)

Writing

|7n)| 2- 1

where 1 is the indicator function, defined in (A.1), and applying the strong law of

large number [38, Thm. 8.3.5] to the limits result in

P{Li = e} = EP {L 1 = } + P{Li = E} E{S 1}
E {Li + Si}

178

f (limnG En"



or equivalently,

P {Li- = e} = f E il P {L1 = f}l. (A.4)
E {L1} + E {S1}

We make the following observations regarding (A.4). If Li takes values in a set E

of integers, then Li. also takes values in the same set of integers. This characteristic

of Li. is expected, since Li. is one of {Li : i > 1}. In addition, for all f, the right-hand

sides of (A.4) are non-negative and sum to 1. This characteristic implies that (A.4)

is a valid PMF. Moreover, if Li = fc and Si = s, are constants, then (A.4) becomes

P{Li-=E= f 1, if f= fc;

0, otherwise,

which agrees with intuition. Furthermore, the expectation of Li. satisfies 3

E{L 2} + E {L 1 } E {S 1 }
E{Li-} = 1

E{L1 }i +E{S 1 }

> E {L 1 },

indicating that Li. tends to be larger than L 1. This characteristic is intuitive, since

the random instant that our observation begins is likely to fall into a large interarrival

time. These observations help to validate (A.4).

Using (A.4) with

Li = Ld, S, = Ls + ea j = fd and Li. = Ld

gives (4.91a). Similarly, using (A.4) with

Li = Ls, Si = L d + fax, ) = fo and Li. = L'

gives (4.91b).

3The inequality follows from the fact that variance E {L 2 } - (E {L}) 2 is non-negative for any

random variable L, or more generally, from the Schwarz inequality [99, Thm. 3.5].
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A.6 Value of # (k)

We decompose

N (k) = Nnai(k) + Ndet (k),

where Nnai(k) denotes the number of k-joint probabilities required to evaluate the

transition probabilities Pral, Pnal-nal, and Cnal, and Rdet(k) denotes the number of k-

joint probabilities required to evaluate the transition probabilities Pdet, Pnal-det, and

Cdet. To obtain Nnai(k), we consider six distinct cases.

Case 1a: Li - 0 and 1 K k K tlax - 2. Then, Rnai(k) = 1, which corresponds

to the k-joint probability term generated by the sequence of k data symbols and the

marker.

Case 2a: L' > 2eax - 2 and 1 < k < fK a - 2. Then, Rnai(k) = k, whichS- max -_ - max

corresponds to the k-joint probability terms generated by the sequences of d data

symbols, k - d - 1 silence symbols, and the marker, for d = 0, 1, 2,. . . , k - 1.

Case 3a: Ls = 0 and k = em - 1. By inspection of Fig. 4-16, Rnai(Eax - 1)

is the number of (fax - 1)-joint probability terms generated by the sequence of

C3 , C4 , ... , cerx, (2fax -- 2) data symbols, the marker, and (emax - 1) data symbols.

Hence, Rnai(Ema - 1) =U3max - 2.

Case 4a: L' > 2fa -2 and k = fm -1. By inspection of Fig. 4-16, Nnai( ax-1)- max max . a y inpect

is the number of (fmax - 1)-joint probability terms generated by the sequence of

C3 , C4 ,..., Cfmx, (2f2a - 2) data symbols, (2Efax - 2) silence symbols, the marker,

and (Em - 1) data symbols. Hence, #nai(E ax - 1) = 5 - 4.

Case 5a: Ls = 0 and k = fa. By inspection of Fig. 4-16, Nnai(Eax) is the number

of f m -joint probability terms generated by the sequence of c2 , C3 , . . . , cf, (2Efax -1)

data symbols, the marker, and (E m-1) data symbols. Hence, Rnai(E'ax) 3 Era -1.

Case 6a: Ls > 2fax -2 and k = fm.. By inspection of Fig. 4-16, Snai(Eax) is the- max mxkl( i h

number of f ax-joint probability terms generated by the sequence of c2 , c 3 ,. . . , cfr,

(2f m - 1) data symbols, (2Efm - 1) silence symbols, the marker, and (fa - 1) data
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symbols. Hence, Rua()m = a - 2.

After deriving pnal, Pnal-nal, and cna, we already have most of the joint probability

terms that are also required for the derivation of Pdet, Pnal-det, and Cdet. The remaining

k-joint probability terms are the first terms of the right-hand side of (4.93) for k -

1, 2, 3,... , em  - 2. We now consider two distinct cases.

Case 1b: L= 0 and1 k max -2. Then, Ndet(k) = 1, which corresponds

to the k-joint probability term generated by the sequence of k data symbols and

CI, C2,-, Cem-1.-

Case 2b: L' >2fax -2and1<k eax -2. Then, Ndet(k) = k + 1, which

corresponds to the k-joint probability terms generated by the sequences of d data

symbols, k - d silence symbols, and c1 , c2 ,. . ., ceX-_1, for d = 0, 1, 2,... , k.

Combining the results from cases la-6a and cases lb-2b gives the bounds for

N (k) in (4.90).
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