364 research outputs found

    Relaxed ISS Small-Gain Theorems for Discrete-Time Systems

    Full text link
    In this paper ISS small-gain theorems for discrete-time systems are stated, which do not require input-to-state stability (ISS) of each subsystem. This approach weakens conservatism in ISS small-gain theory, and for the class of exponentially ISS systems we are able to prove that the proposed relaxed small-gain theorems are non-conservative in a sense to be made precise. The proofs of the small-gain theorems rely on the construction of a dissipative finite-step ISS Lyapunov function which is introduced in this work. Furthermore, dissipative finite-step ISS Lyapunov functions, as relaxations of ISS Lyapunov functions, are shown to be sufficient and necessary to conclude ISS of the overall system.Comment: input-to-state stability, Lyapunov methods, small-gain conditions, discrete-time non-linear systems, large-scale interconnection

    Stability of interconnected impulsive systems with and without time-delays using Lyapunov methods

    Full text link
    In this paper we consider input-to-state stability (ISS) of impulsive control systems with and without time-delays. We prove that if the time-delay system possesses an exponential Lyapunov-Razumikhin function or an exponential Lyapunov-Krasovskii functional, then the system is uniformly ISS provided that the average dwell-time condition is satisfied. Then, we consider large-scale networks of impulsive systems with and without time-delays and we prove that the whole network is uniformly ISS under a small-gain and a dwell-time condition. Moreover, these theorems provide us with tools to construct a Lyapunov function (for time-delay systems - a Lyapunov-Krasovskii functional or a Lyapunov-Razumikhin function) and the corresponding gains of the whole system, using the Lyapunov functions of the subsystems and the internal gains, which are linear and satisfy the small-gain condition. We illustrate the application of the main results on examples
    • …
    corecore