100 research outputs found

    Toeplitz minors and specializations of skew Schur polynomials

    Get PDF
    We express minors of Toeplitz matrices of finite and large dimension in terms of symmetric functions. Comparing the resulting expressions with the inverses of some Toeplitz matrices, we obtain explicit formulas for a Selberg-Morris integral and for specializations of certain skew Schur polynomials.Comment: v2: Added new results on specializations of skew Schur polynomials, abstract and title modified accordingly and references added; v3: final, published version; 18 page

    Exact equivalences and phase discrepancies between random matrix ensembles

    Get PDF
    We study two types of random matrix ensembles that emerge when considering the same probability measure on partitions. One is the Meixner ensemble with a hard wall and the other are two families of unitary matrix models, with weight functions that can be interpreted as characteristic polynomial insertions. We show that the models, while having the same exact evaluation for fixed values of the parameter, may present a different phase structure. We find phase transitions of the second and third order, depending on the model. Other relationships, via direct mapping, between the unitary matrix models and continuous random matrix ensembles on the real line, of Cauchy-Romanovski type, are presented and studied both exactly and asymptotically. The case of orthogonal and symplectic groups is studied as well and related to Wronskians of Chebyshev polynomials, that we evaluate at large NN.Comment: 41 pages, 10 figures. v2: some explanations and references added, final versio

    Exact equivalences and phase discrepancies between random matrix ensembles

    Get PDF
    We study two types of random matrix ensembles that emerge when considering the same probability measure on partitions. One is the Meixner ensemble with a hard wall and the other are two families of unitary matrix models, with weight functions that can be interpreted as characteristic polynomial insertions. We show that the models, while having the same exact evaluation for fixed values of the parameter, may present a different phase structure. We find phase transitions of the second and third order, depending on the model. Other relationships, via direct mapping, between the unitary matrix models and continuous random matrix ensembles on the real line, of Cauchy-Romanovski type, are presented and studied both exactly and asymptotically. The case of orthogonal and symplectic groups is studied as well and related to Wronskians of Chebyshev polynomials, that we evaluate at largeN.info:eu-repo/semantics/acceptedVersio

    A general framework for solving Riemann-Hilbert problems\ud numerically

    Get PDF
    A new, numerical framework for the approximation of solutions to matrix-valued Riemann-Hilbert problems is developed, based on a recent method for the homogeneous Painlev\'e II Riemann- Hilbert problem. We demonstrate its effectiveness by computing solutions to other Painlev\'e transcendents.\ud \ud An implementation in MATHEMATICA is made available online

    Schur Averages in Random Matrix Ensembles

    Get PDF
    The main focus of this PhD thesis is the study of minors of Toeplitz, Hankel and Toeplitz±Hankel matrices. These can be expressed as matrix models over the classical Lie groups G(N) = U(N); Sp(2N);O(2N);O(2N + 1), with the insertion of irreducible characters associated to each of the groups. In order to approach this topic, we consider matrices generated by formal power series in terms of symmetric functions. We exploit these connections to obtain several relations between the models over the different groups G(N), and to investigate some of their structural properties. We compute explicitly several objects of interest, including a variety of matrix models, evaluations of certain skew Schur polynomials, partition functions and Wilson loops of G(N) Chern-Simons theory on S3, and fermion quantum models with matrix degrees of freedom. We also explore the connection with orthogonal polynomials, and study the large N behaviour of the average of a characteristic polynomial in the Laguerre Unitary Ensemble by means of the associated Riemann-Hilbert problem. We gratefully acknowledge the support of the Fundação para a Ciência e a Tecnologia through its LisMath scholarship PD/BD/113627/2015, which made this work possible

    Sequences of Numbers Meet the Generalized Gegenbauer-Humbert Polynomials

    Get PDF
    Here we present a connection between a sequence of numbers generated by a linear recurrence relation of order 2 and sequences of the generalized Gegenbauer-Humbert polynomials. Many new and known formulas of the Fibonacci, the Lucas, the Pell, and the Jacobsthal numbers in terms of the generalized Gegenbauer-Humbert polynomial values are given. The applications of the relationship to the construction of identities of number and polynomial value sequences defined by linear recurrence relations are also discussed

    Relationships between the permanents of a certain type of k-tridiagonal symmetric Toeplitz matrix and the Chebyshev polynomials

    Full text link
    In this study, the recursive relations between the permanents of a certain type of the k-tridiagonal symmetric Toeplitz matrix with complex entries and the Chebyshev polynomials of the second kind are presented
    corecore