29,076 research outputs found

    The vector floor and ceiling model

    Get PDF
    This paper motivates and develops a nonlinear extension of the Vector Autoregressive model which we call the Vector Floor and Ceiling model. Bayesian and classical methods for estimation and testing are developed and compared in the context of an application involving U.S. macroeconomic data. In terms of statistical significance both classical and Bayesian methods indicate that the (Gaussian) linear model is inadequate. Using impulse response functions we investigate the economic significance of the statistical analysis. We find evidence of strong nonlinearities in the contemporaneous relationships between the variables and milder evidence of nonlinearity in the conditional mean

    Quantum feedback control and classical control theory

    Get PDF
    We introduce and discuss the problem of quantum feedback control in the context of established formulations of classical control theory, examining conceptual analogies and essential differences. We describe the application of state-observer-based control laws, familiar in classical control theory, to quantum systems and apply our methods to the particular case of switching the state of a particle in a double-well potential

    The Saffman-Taylor problem on a sphere

    Full text link
    The Saffman-Taylor problem addresses the morphological instability of an interface separating two immiscible, viscous fluids when they move in a narrow gap between two flat parallel plates (Hele-Shaw cell). In this work, we extend the classic Saffman-Taylor situation, by considering the flow between two curved, closely spaced, concentric spheres (spherical Hele-Shaw cell). We derive the mode-coupling differential equation for the interface perturbation amplitudes and study both linear and nonlinear flow regimes. The effect of the spherical cell (positive) spatial curvature on the shape of the interfacial patterns is investigated. We show that stability properties of the fluid-fluid interface are sensitive to the curvature of the surface. In particular, it is found that positive spatial curvature inhibits finger tip-splitting. Hele-Shaw flow on weakly negative, curved surfaces is briefly discussed.Comment: 26 pages, 4 figures, RevTex, accepted for publication in Phys. Rev.

    Physics-informed Neural Networks for Solving Inverse Problems of Nonlinear Biot's Equations: Batch Training

    Full text link
    In biomedical engineering, earthquake prediction, and underground energy harvesting, it is crucial to indirectly estimate the physical properties of porous media since the direct measurement of those are usually impractical/prohibitive. Here we apply the physics-informed neural networks to solve the inverse problem with regard to the nonlinear Biot's equations. Specifically, we consider batch training and explore the effect of different batch sizes. The results show that training with small batch sizes, i.e., a few examples per batch, provides better approximations (lower percentage error) of the physical parameters than using large batches or the full batch. The increased accuracy of the physical parameters, comes at the cost of longer training time. Specifically, we find the size should not be too small since a very small batch size requires a very long training time without a corresponding improvement in estimation accuracy. We find that a batch size of 8 or 32 is a good compromise, which is also robust to additive noise in the data. The learning rate also plays an important role and should be used as a hyperparameter.Comment: arXiv admin note: text overlap with arXiv:2002.0823

    Cosmological Density and Power Spectrum from Peculiar Velocities: Nonlinear Corrections and PCA

    Get PDF
    We allow for nonlinear effects in the likelihood analysis of galaxy peculiar velocities, and obtain ~35%-lower values for the cosmological density parameter Om and the amplitude of mass-density fluctuations. The power spectrum in the linear regime is assumed to be a flat LCDM model (h=0.65, n=1, COBE) with only Om as a free parameter. Since the likelihood is driven by the nonlinear regime, we "break" the power spectrum at k_b=0.2 h/Mpc and fit a power law at k>k_b. This allows for independent matching of the nonlinear behavior and an unbiased fit in the linear regime. The analysis assumes Gaussian fluctuations and errors, and a linear relation between velocity and density. Tests using proper mock catalogs demonstrate a reduced bias and a better fit. We find for the Mark3 and SFI data Om_m=0.32+-0.06 and 0.37+-0.09 respectively, with sigma_8*Om^0.6 = 0.49+-0.06 and 0.63+-0.08, in agreement with constraints from other data. The quoted 90% errors include cosmic variance. The improvement in likelihood due to the nonlinear correction is very significant for Mark3 and moderately so for SFI. When allowing deviations from LCDM, we find an indication for a wiggle in the power spectrum: an excess near k=0.05 and a deficiency at k=0.1 (cold flow). This may be related to the wiggle seen in the power spectrum from redshift surveys and the second peak in the CMB anisotropy. A chi^2 test applied to modes of a Principal Component Analysis (PCA) shows that the nonlinear procedure improves the goodness of fit and reduces a spatial gradient of concern in the linear analysis. The PCA allows addressing spatial features of the data and fine-tuning the theoretical and error models. It shows that the models used are appropriate for the cosmological parameter estimation performed. We address the potential for optimal data compression using PCA.Comment: 18 pages, LaTex, uses emulateapj.sty, ApJ in press (August 10, 2001), improvements to text and figures, updated reference

    Identifying Finite-Time Coherent Sets from Limited Quantities of Lagrangian Data

    Full text link
    A data-driven procedure for identifying the dominant transport barriers in a time-varying flow from limited quantities of Lagrangian data is presented. Our approach partitions state space into pairs of coherent sets, which are sets of initial conditions chosen to minimize the number of trajectories that "leak" from one set to the other under the influence of a stochastic flow field during a pre-specified interval in time. In practice, this partition is computed by posing an optimization problem, which once solved, yields a pair of functions whose signs determine set membership. From prior experience with synthetic, "data rich" test problems and conceptually related methods based on approximations of the Perron-Frobenius operator, we observe that the functions of interest typically appear to be smooth. As a result, given a fixed amount of data our approach, which can use sets of globally supported basis functions, has the potential to more accurately approximate the desired functions than other functions tailored to use compactly supported indicator functions. This difference enables our approach to produce effective approximations of pairs of coherent sets in problems with relatively limited quantities of Lagrangian data, which is usually the case with real geophysical data. We apply this method to three examples of increasing complexity: the first is the double gyre, the second is the Bickley Jet, and the third is data from numerically simulated drifters in the Sulu Sea.Comment: 14 pages, 7 figure

    Radial fingering in a Hele-Shaw cell: a weakly nonlinear analysis

    Full text link
    The Saffman-Taylor viscous fingering instability occurs when a less viscous fluid displaces a more viscous one between narrowly spaced parallel plates in a Hele-Shaw cell. Experiments in radial flow geometry form fan-like patterns, in which fingers of different lengths compete, spread and split. Our weakly nonlinear analysis of the instability predicts these phenomena, which are beyond the scope of linear stability theory. Finger competition arises through enhanced growth of sub-harmonic perturbations, while spreading and splitting occur through the growth of harmonic modes. Nonlinear mode-coupling enhances the growth of these perturbations with appropriate relative phases, as we demonstrate through a symmetry analysis of the mode coupling equations. We contrast mode coupling in radial flow with rectangular flow geometry.Comment: 36 pages, 5 figures, Latex, added references, to appear in Physica D (1998
    corecore