2,109 research outputs found

    Heartbeat Stars, Tidally Excited Oscillations, and Resonance Locking

    Get PDF
    Heartbeat stars are eccentric binary stars in short period orbits whose light curves are shaped by tidal distortion, reflection, and Doppler beaming. Some heartbeat stars exhibit tidally excited oscillations and present new opportunities for understanding the physics of tidal dissipation within stars. We present detailed methods to compute the forced amplitudes, frequencies, and phases of tidally excited oscillations in eccentric binary systems. Our methods i) factor out the equilibrium tide for easier comparison with observations, ii) account for rotation using the traditional approximation, iii) incorporate non-adiabatic effects to reliably compute surface luminosity perturbations, iv) allow for spin-orbit misalignment, and v) correctly sum over contributions from many oscillation modes. We also discuss why tidally excited oscillations are more visible in hot stars with surface temperatures T ⁣ ⁣6500KT \! \gtrsim \! 6500 \, {\rm K}, and we derive some basic probability theory that can be used to compare models with data in a statistical manner. Application of this theory to heartbeat systems can be used to determine whether observed tidally excited oscillations can be explained by chance resonances with stellar oscillation modes, or whether a resonance locking process is operating.Comment: Published in MNRA

    Tidal dissipation in rotating giant planets

    Full text link
    [Abridged] Tides may play an important role in determining the observed distributions of mass, orbital period, and eccentricity of the extrasolar planets. In addition, tidal interactions between giant planets in the solar system and their moons are thought to be responsible for the orbital migration of the satellites, leading to their capture into resonant configurations. We treat the underlying fluid dynamical problem with the aim of determining the efficiency of tidal dissipation in gaseous giant planets. In cases of interest, the tidal forcing frequencies are comparable to the spin frequency of the planet but small compared to its dynamical frequency. We therefore study the linearized response of a slowly and possibly differentially rotating planet to low-frequency tidal forcing. Convective regions of the planet support inertial waves, while any radiative regions support generalized Hough waves. We present illustrative numerical calculations of the tidal dissipation rate and argue that inertial waves provide a natural avenue for efficient tidal dissipation in most cases of interest. The resulting value of Q depends in a highly erratic way on the forcing frequency, but we provide evidence that the relevant frequency-averaged dissipation rate may be asymptotically independent of the viscosity in the limit of small Ekman number. In short-period extrasolar planets, if the stellar irradiation of the planet leads to the formation of a radiative outer layer that supports generalized Hough modes, the tidal dissipation rate can be enhanced through the excitation and damping of these waves. These dissipative mechanisms offer a promising explanation of the historical evolution and current state of the Galilean satellites as well as the observed circularization of the orbits of short-period extrasolar planets.Comment: 74 pages, 12 figures, submitted to The Astrophysical Journa

    Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach

    Get PDF
    Mixing fluid in a container at low Reynolds number - in an inertialess environment - is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase": peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.Comment: Revised, published versio

    Patterns and Collective Behavior in Granular Media: Theoretical Concepts

    Full text link
    Granular materials are ubiquitous in our daily lives. While they have been a subject of intensive engineering research for centuries, in the last decade granular matter attracted significant attention of physicists. Yet despite a major efforts by many groups, the theoretical description of granular systems remains largely a plethora of different, often contradicting concepts and approaches. Authors give an overview of various theoretical models emerged in the physics of granular matter, with the focus on the onset of collective behavior and pattern formation. Their aim is two-fold: to identify general principles common for granular systems and other complex non-equilibrium systems, and to elucidate important distinctions between collective behavior in granular and continuum pattern-forming systems.Comment: Submitted to Reviews of Modern Physics. Full text with figures (2Mb pdf) avaliable at http://mti.msd.anl.gov/AransonTsimringReview/aranson_tsimring.pdf Community responce is appreciated. Comments/suggestions send to [email protected]

    Phase description of oscillatory convection with a spatially translational mode

    Full text link
    We formulate a theory for the phase description of oscillatory convection in a cylindrical Hele-Shaw cell that is laterally periodic. This system possesses spatial translational symmetry in the lateral direction owing to the cylindrical shape as well as temporal translational symmetry. Oscillatory convection in this system is described by a limit-torus solution that possesses two phase modes; one is a spatial phase and the other is a temporal phase. The spatial and temporal phases indicate the position and oscillation of the convection, respectively. The theory developed in this paper can be considered as a phase reduction method for limit-torus solutions in infinite-dimensional dynamical systems, namely, limit-torus solutions to partial differential equations representing oscillatory convection with a spatially translational mode. We derive the phase sensitivity functions for spatial and temporal phases; these functions quantify the phase responses of the oscillatory convection to weak perturbations applied at each spatial point. Using the phase sensitivity functions, we characterize the spatiotemporal phase responses of oscillatory convection to weak spatial stimuli and analyze the spatiotemporal phase synchronization between weakly coupled systems of oscillatory convection.Comment: 35 pages, 14 figures. Generalizes the phase description method developed in arXiv:1110.112

    Hidden attractors in fundamental problems and engineering models

    Full text link
    Recently a concept of self-excited and hidden attractors was suggested: an attractor is called a self-excited attractor if its basin of attraction overlaps with neighborhood of an equilibrium, otherwise it is called a hidden attractor. For example, hidden attractors are attractors in systems with no equilibria or with only one stable equilibrium (a special case of multistability and coexistence of attractors). While coexisting self-excited attractors can be found using the standard computational procedure, there is no standard way of predicting the existence or coexistence of hidden attractors in a system. In this plenary survey lecture the concept of self-excited and hidden attractors is discussed, and various corresponding examples of self-excited and hidden attractors are considered
    corecore