3 research outputs found

    On Murty-Simon Conjecture II

    Full text link
    A graph is diameter two edge-critical if its diameter is two and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter two edge-critical graph on nn vertices is at most ⌊n24βŒ‹\lfloor \frac{n^{2}}{4} \rfloor and the extremal graph is the complete bipartite graph K⌊n2βŒ‹,⌈n2βŒ‰K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}. In the series papers [7-9], the Murty-Simon Conjecture stated by Haynes et al. is not the original conjecture, indeed, it is only for the diameter two edge-critical graphs of even order. In this paper, we completely prove the Murty-Simon Conjecture for the graphs whose complements have vertex connectivity β„“\ell, where β„“=1,2,3\ell = 1, 2, 3; and for the graphs whose complements have an independent vertex cut of cardinality at least three.Comment: 9 pages, submitted for publication on May 10, 201

    On a Conjecture of Murty and Simon on Diameter Two Critical Graphs II

    Get PDF
    A graph G is diameter 2-critical if its diameter is two and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter 2-critical graph of order n is at most n2/4 and that the extremal graphs are complete bipartite graphs with equal size partite sets. We use an important association with total domination to prove the conjecture for the graphs whose complements have vertex connectivity k for k∈1,2,3
    corecore