817 research outputs found

    Index

    Get PDF

    Stratification and domination in graphs.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.In a recent manuscript (Stratification and domination in graphs. Discrete Math. 272 (2003), 171-185) a new mathematical framework for studying domination is presented. It is shown that the domination number and many domination related parameters can be interpreted as restricted 2-stratifications or 2-colorings. This framework places the domination number in a new perspective and suggests many other parameters of a graph which are related in some way to the domination number. In this thesis, we continue this study of domination and stratification in graphs. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at the blue vertex v. An F-coloring of a graph G is a red-blue coloring of the vertices of G such that every blue vertex v of G belongs to a copy of F (not necessarily induced in G) rooted at v. The F-domination number yF(GQ of G is the minimum number of red vertices of G in an F-coloring of G. Chapter 1 is an introduction to the chapters that follow. In Chapter 2, we investigate the X-domination number of prisms when X is a 2-stratified 4-cycle rooted at a blue vertex where a prism is the cartesian product Cn x K2, n > 3, of a cycle Cn and a K2. In Chapter 3 we investigate the F-domination number when (i) F is a 2-stratified path P3 on three vertices rooted at a blue vertex which is an end-vertex of the F3 and is adjacent to a blue vertex and with the remaining vertex colored red. In particular, we show that for a tree of diameter at least three this parameter is at most two-thirds its order and we characterize the trees attaining this bound. (ii) We also investigate the F-domination number when F is a 2-stratified K3 rooted at a blue vertex and with exactly one red vertex. We show that if G is a connected graph of order n in which every edge is in a triangle, then for n sufficiently large this parameter is at most (n — /n)/2 and this bound is sharp. In Chapter 4, we further investigate the F-domination number when F is a 2- stratified path P3 on three vertices rooted at a blue vertex which is an end-vertex of the P3 and is adjacent to a blue vertex with the remaining vertex colored red. We show that for a connected graph of order n with minimum degree at least two this parameter is bounded above by (n —1)/2 with the exception of five graphs (one each of orders four, five and six and two of order eight). For n > 9, we characterize those graphs that achieve the upper bound of (n — l)/2. In Chapter 5, we define an f-coloring of a graph to be a red-blue coloring of the vertices such that every blue vertex is adjacent to a blue vertex and to a red vertex, with the red vertex itself adjacent to some other red vertex. The f-domination number yz{G) of a graph G is the minimum number of red vertices of G in an f-coloring of G. Let G be a connected graph of order n > 4 with minimum degree at least 2. We prove that (i) if G has maximum degree A where A 4 with maximum degree A where A 5 with maximum degree A where

    Characterizing the strongly jump-traceable sets via randomness

    Full text link
    We show that if a set AA is computable from every superlow 1-random set, then AA is strongly jump-traceable. This theorem shows that the computably enumerable (c.e.) strongly jump-traceable sets are exactly the c.e.\ sets computable from every superlow 1-random set. We also prove the analogous result for superhighness: a c.e.\ set is strongly jump-traceable if and only if it is computable from every superhigh 1-random set. Finally, we show that for each cost function cc with the limit condition there is a 1-random Δ20\Delta^0_2 set YY such that every c.e.\ set A≀TYA \le_T Y obeys cc. To do so, we connect cost function strength and the strength of randomness notions. This result gives a full correspondence between obedience of cost functions and being computable from Δ20\Delta^0_2 1-random sets.Comment: 41 page

    National Culture and Financial Systems

    Full text link
    Countries differ in the way their financial activities are organized. In Anglo-Saxon countries such as the U.S. and the U.K., financial systems are dominated by stock markets whereas in Continental Europe and Japan, banks play a predominant role. Why do countries differ in the configuration of their financial systems? We argue that national culture plays a significant role. We find that countries characterized by higher uncertainty avoidance, as an attribute of their national culture, are more likely to have a bank-based system.http://deepblue.lib.umich.edu/bitstream/2027.42/57264/1/wp884 .pd

    On location, domination and information retrieval

    Get PDF
    The thesis is divided into two main branches: identifying and locatingdominating codes, and information retrieval. The former topics are motivated by the aim to locate objects in sensor networks (or other similar applications) and the latter one by the need to retrieve information in memories such as DNA data storage systems. Albeit the underlying applications, the study on these topics mainly belongs to discrete mathematics; more specically, to the elds of coding and graph theory. The sensor networks are usually represented by graphs where vertices represent the monitored locations and edges the connections between the locations. Moreover, the locations of the sensors are determined by a code. Furthermore, the desired properties of the sensor network are deeply linked with the properties of the underlying code. The number of errors in reading the data is abundant in the DNA data storage systems. In particular, there can occur more errors than a reasonable error-correcting code can handle. However, this problem is somewhat oset by the possibility to obtain multiple approximations of the same information from the data storage. Hence, the information retrieval process can be modelled by the Levenshtein's channel model, where a message is sent through multiple noisy channels and multiple outputs are received. In the rst two papers of the thesis, we introduce and study the new concepts of self- and solid-locating-dominating codes as a natural analogy to self-identifying codes with respect to locating-dominating codes. The rst paper introduces these new codes and considers them in some graphs such as the Hamming graphs. Then, in the second paper, we broaden our view on the topic by considering graph theoretical questions. We give optimal codes in multiple dierent graph classes and some more general results using concepts such as the Dilworth number and graph complements. The third paper focuses on the q-ary Hamming spaces. In particular, we disprove a conjecture proposed by Goddard and Wash related to identifying codes. In the fourth paper, we return to self- and solid-locating-dominating codes and give optimal codes in some graph classes and consider their densities in innite graphs. In the fth paper, we consider information retrieval in memories; in particular, the Levenshtein's channel model. In the channel model, we transmit some codeword belonging to the binary Hamming space through multiple identical channels. With the help of multiple dierent outputs, we give a list of codewords which may have been sent. In the paper, we study the number of channels required to have a rather small (constant) list size when the properties of the channels, the code and the dimension of the Hamming space are xed. In particular, we give an exact relation between the number of channels and the asymptotic value of the maximum list size.VÀitöskirja kÀsittelee kahta aihetta: identioivia ja paikantavia peittokoodeja sekÀ tiedon noutamista muistista. EnsimmÀisen aiheen motivaationa on objektien paikantaminen sensoriverkoista (sekÀ muut samankaltaiset sovellukset) ja jÀlkimmÀisen tiedonnouto DNA-muisteista. NÀiden aiheiden tutkimus kuuluu diskreettiin matematiikkaan, tÀsmÀllisemmin koodaus- ja graa-teoriaan. Sensoriverkkoja kuvataan yleensÀ graafeilla, joissa solmut esittÀvÀt tarkkailtuja kohteita ja viivat yhteyksiÀ nÀiden kohteiden vÀlillÀ. Edelleen sensorien paikat mÀÀrÀytyvÀt annetun koodin perusteella. TÀstÀ johtuen sensoriverkon halutut ominaisuudet pohjautuvat vahvasti alla olevaan koodiin. Luettaessa tietoa DNA-muisteista tapahtuvien virheiden mÀÀrÀ saattaa olla erittÀin suuri; erityisesti suurempi kuin kiinnitetyn virheitÀ korjaavan koodin korjauskyky. Toisaalta tilanne ei ole aivan nÀin ongelmallinen, sillÀ DNA-muisteista voidaan saada useita eri arvioita muistiin tallennetusta tiedosta. NÀistÀ syistÀ johtuen tietojen noutamista DNA-muisteista voidaan mallintaa kÀyttÀen Levenshteinin kanavamallia. Kanavamallissa yksi viesti lÀhetetÀÀn useiden hÀiriöisten kanavien kautta ja nÀin vastaanotetaan useita viestejÀ (yksi jokaisesta kanavasta). VÀitöskirjan kahdessa ensimmÀisessÀ julkaisussa esitellÀÀn ja tutkitaan uusia paikantavien peittokoodien luokkia, jotka pohjautuvat aiemmin tutkittuihin itse-identioiviin koodeihin. EnsimmÀisessÀ julkaisussa on esitelty nÀmÀ koodiluokat sekÀ tutkittu niitÀ joissain graafeissa kuten Hammingin graafeissa. TÀmÀn jÀlkeen toisessa julkaisussa kÀsitellÀÀn yleisiÀ graa-teoreettisia kysymyksiÀ. Julkaisussa esitetÀÀn optimaaliset koodit useille graaperheille sekÀ joitain yleisempiÀ tuloksia kÀyttÀen mm. Dilworthin lukua sekÀ graakomplementteja. Kolmas julkaisu keskittyy q-arisiin Hammingin avaruuksiin. Erityisesti julkaisussa todistetaan vÀÀrÀksi Goddardin ja Washin aiemmin esittÀmÀ identioivia koodeja koskeva otaksuma. NeljÀs artikkeli kÀsittelee jo kahdessa ensimmÀisessÀ artikkelissa esiteltyjÀ paikantavien peittokoodien luokkia. Artikkeli esittÀÀ optimaalisia koodeja useille graaperheille sekÀ kÀsittelee ÀÀrettömiÀ graafeja. Viides artikkeli kÀsittelee tiedonnoutoa ja erityisesti Levenshteinin kanavamallia. Kanavamallissa binÀÀriseen Hammingin avaruuteen kuuluva koodisana lÀhetetÀÀn useiden identtisten kanavien lÀpi. NÀistÀ kanavista vastaanotetaan useita eri arvioita lÀhetetystÀ koodisanasta ja rakennetaan lista mahdollisesti lÀhetetyistÀ sanoista. Artikkelissa tutkitaan kuinka monta kanavaa tarvitaan, jotta tÀmÀn listan koko on pieni (vakio), kun kanavien ominaisuudet, koodi ja Hammingin avaruuden dimensio on kiinnitetty. Erityisesti löydetÀÀn tÀsmÀllinen suhde kanavien lukumÀÀrÀn ja asymptoottisesti maksimaalisen listan koon vÀlille

    National Culture and Financial Systems

    Get PDF
    Countries differ in the way their financial activities are organized. In Anglo-Saxon countries such as the U.S. and the U.K., financial systems are dominated by stock markets whereas in Continental Europe and Japan, banks play a predominant role. Why do countries differ in the configuration of their financial systems? We argue that national culture plays a significant role. We find that countries characterized by higher uncertainty avoidance, as an attribute of their national culture, are more likely to have a bank-based system.Financial Systems, Bank-based, Market based, Culture, Uncertainty Avoidance

    Subject Index Volumes 1–200

    Get PDF
    • 

    corecore