283 research outputs found

    On quaternary complex Hadamard matrices of small orders

    Full text link
    One of the main goals of design theory is to classify, characterize and count various combinatorial objects with some prescribed properties. In most cases, however, one quickly encounters a combinatorial explosion and even if the complete enumeration of the objects is possible, there is no apparent way how to study them in details, store them efficiently, or generate a particular one rapidly. In this paper we propose a novel method to deal with these difficulties, and illustrate it by presenting the classification of quaternary complex Hadamard matrices up to order 8. The obtained matrices are members of only a handful of parametric families, and each inequivalent matrix, up to transposition, can be identified through its fingerprint.Comment: 7 page

    Classification of generalized Hadamard matrices H(6,3) and quaternary Hermitian self-dual codes of length 18

    Get PDF
    All generalized Hadamard matrices of order 18 over a group of order 3, H(6,3), are enumerated in two different ways: once, as class regular symmetric (6,3)-nets, or symmetric transversal designs on 54 points and 54 blocks with a group of order 3 acting semi-regularly on points and blocks, and secondly, as collections of full weight vectors in quaternary Hermitian self-dual codes of length 18. The second enumeration is based on the classification of Hermitian self-dual [18,9] codes over GF(4), completed in this paper. It is shown that up to monomial equivalence, there are 85 generalized Hadamard matrices H(6,3), and 245 inequivalent Hermitian self-dual codes of length 18 over GF(4).Comment: 17 pages. Minor revisio

    A Generalised Hadamard Transform

    Get PDF
    A Generalised Hadamard Transform for multi-phase or multilevel signals is introduced, which includes the Fourier, Generalised, Discrete Fourier, Walsh-Hadamard and Reverse Jacket Transforms. The jacket construction is formalised and shown to admit a tensor product decomposition. Primary matrices under this decomposition are identified. New examples of primary jacket matrices of orders 8 and 12 are presented.Comment: To appear in the proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200

    Kerdock Codes Determine Unitary 2-Designs

    Get PDF
    The non-linear binary Kerdock codes are known to be Gray images of certain extended cyclic codes of length N=2mN = 2^m over Z4\mathbb{Z}_4. We show that exponentiating these Z4\mathbb{Z}_4-valued codewords by ı≜−1\imath \triangleq \sqrt{-1} produces stabilizer states, that are quantum states obtained using only Clifford unitaries. These states are also the common eigenvectors of commuting Hermitian matrices forming maximal commutative subgroups (MCS) of the Pauli group. We use this quantum description to simplify the derivation of the classical weight distribution of Kerdock codes. Next, we organize the stabilizer states to form N+1N+1 mutually unbiased bases and prove that automorphisms of the Kerdock code permute their corresponding MCS, thereby forming a subgroup of the Clifford group. When represented as symplectic matrices, this subgroup is isomorphic to the projective special linear group PSL(2,N2,N). We show that this automorphism group acts transitively on the Pauli matrices, which implies that the ensemble is Pauli mixing and hence forms a unitary 22-design. The Kerdock design described here was originally discovered by Cleve et al. (arXiv:1501.04592), but the connection to classical codes is new which simplifies its description and translation to circuits significantly. Sampling from the design is straightforward, the translation to circuits uses only Clifford gates, and the process does not require ancillary qubits. Finally, we also develop algorithms for optimizing the synthesis of unitary 22-designs on encoded qubits, i.e., to construct logical unitary 22-designs. Software implementations are available at https://github.com/nrenga/symplectic-arxiv18a, which we use to provide empirical gate complexities for up to 1616 qubits.Comment: 16 pages double-column, 4 figures, and some circuits. Accepted to 2019 Intl. Symp. Inf. Theory (ISIT), and PDF of the 5-page ISIT version is included in the arXiv packag

    Hadamard matrices modulo 5

    Full text link
    In this paper we introduce modular symmetric designs and use them to study the existence of Hadamard matrices modulo 5. We prove that there exist 5-modular Hadamard matrices of order n if and only if n != 3, 7 (mod 10) or n != 6, 11. In particular, this solves the 5-modular version of the Hadamard conjecture.Comment: 7 pages, submitted to JC
    • …
    corecore