11,514 research outputs found

    Enlarged Controllability of Riemann-Liouville Fractional Differential Equations

    Full text link
    We investigate exact enlarged controllability for time fractional diffusion systems of Riemann-Liouville type. The Hilbert uniqueness method is used to prove exact enlarged controllability for both cases of zone and pointwise actuators. A penalization method is given and the minimum energy control is characterized.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Nonlinear Dynamics', ISSN 1555-1415, eISSN 1555-1423, CODEN JCNDDM, available at [http://computationalnonlinear.asmedigitalcollection.asme.org]. Submitted 10-Aug-2017; Revised 28-Sept-2017 and 24-Oct-2017; Accepted 05-Nov-201

    A survey on fuzzy fractional differential and optimal control nonlocal evolution equations

    Full text link
    We survey some representative results on fuzzy fractional differential equations, controllability, approximate controllability, optimal control, and optimal feedback control for several different kinds of fractional evolution equations. Optimality and relaxation of multiple control problems, described by nonlinear fractional differential equations with nonlocal control conditions in Banach spaces, are considered.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Applied Mathematics', ISSN: 0377-0427. Submitted 17-July-2017; Revised 18-Sept-2017; Accepted for publication 20-Sept-2017. arXiv admin note: text overlap with arXiv:1504.0515

    Semi-Markov models and motion in heterogeneous media

    Full text link
    In this paper we study continuous time random walks (CTRWs) such that the holding time in each state has a distribution depending on the state itself. For such processes, we provide integro-differential (backward and forward) equations of Volterra type, exhibiting a position dependent convolution kernel. Particular attention is devoted to the case where the holding times have a power-law decaying density, whose exponent depends on the state itself, which leads to variable order fractional equations. A suitable limit yields a variable order fractional heat equation, which models anomalous diffusions in heterogeneous media

    On the analysis of mixed-index time fractional differential equation systems

    Full text link
    In this paper we study the class of mixed-index time fractional differential equations in which different components of the problem have different time fractional derivatives on the left hand side. We prove a theorem on the solution of the linear system of equations, which collapses to the well-known Mittag-Leffler solution in the case the indices are the same, and also generalises the solution of the so-called linear sequential class of time fractional problems. We also investigate the asymptotic stability properties of this class of problems using Laplace transforms and show how Laplace transforms can be used to write solutions as linear combinations of generalised Mittag-Leffler functions in some cases. Finally we illustrate our results with some numerical simulations.Comment: 21 pages, 6 figures (some are made up of sub-figures - there are 15 figures or sub-figures
    • …
    corecore