6,221 research outputs found

    Quantum calcium-ion interactions with EEG

    Full text link
    Previous papers have developed a statistical mechanics of neocortical interactions (SMNI) fit to short-term memory and EEG data. Adaptive Simulated Annealing (ASA) has been developed to perform fits to such nonlinear stochastic systems. An N-dimensional path-integral algorithm for quantum systems, qPATHINT, has been developed from classical PATHINT. Both fold short-time propagators (distributions or wave functions) over long times. Previous papers applied qPATHINT to two systems, in neocortical interactions and financial options. \textbf{Objective}: In this paper the quantum path-integral for Calcium ions is used to derive a closed-form analytic solution at arbitrary time that is used to calculate interactions with classical-physics SMNI interactions among scales. Using fits of this SMNI model to EEG data, including these effects, will help determine if this is a reasonable approach. \textbf{Method}: Methods of mathematical-physics for optimization and for path integrals in classical and quantum spaces are used for this project. Studies using supercomputer resources tested various dimensions for their scaling limits. In this paper the quantum path-integral is used to derive a closed-form analytic solution at arbitrary time that is used to calculate interactions with classical-physics SMNI interactions among scales. \textbf{Results}: The mathematical-physics and computer parts of the study are successful, in that there is modest improvement of cost/objective functions used to fit EEG data using these models. \textbf{Conclusion}: This project points to directions for more detailed calculations using more EEG data and qPATHINT at each time slice to propagate quantum calcium waves, synchronized with PATHINT propagation of classical SMNI.Comment: published in Sc

    Observation and Quantum Objectivity

    Get PDF
    The paradox of Wigner's friend challenges the objectivity of description in quantum theory. A pragmatist interpretation can meet this challenge by judicious appeal to decoherence. On this interpretation, quantum theory provides situated agents with resources for predicting and explaining what happens in the physical world---not conscious observations of it. Even in Wigner's friend scenarios, differently situated agents agree on the objective content of statements about the values of physical magnitudes. In more realistic circumstances quantum Darwinism also permits differently situated agents equal observational access to evaluate their truth. In this view, quantum theory has nothing to say about consciousness or conscious experiences of observers. But it does prompt us to reexamine the significance even of everyday claims about the physical world

    Consciousness, cognition, and the hierarchy of context: extending the global neuronal workspace model

    Get PDF
    We adapt an information theory analysis of interacting cognitive biological and social modules to the problem of the global neuronal workspace, the new standard neuroscience paradigm for consciousness. Tunable punctuation emerges in a natural way, suggesting the possibility of fitting appropriate phase transition power law, and away from transition, generalized Onsager relation expressions, to observational data on conscious reaction. The development can be extended in a straightforward manner to include psychosocial stress, culture, or other cognitive modules which constitute a structured, embedding hierarchy of contextual constraints acting at a slower rate than neuronal function itself. This produces a 'biopsychosociocultural' model of individual consciousness that, while otherwise quite close to the standard treatment, meets compelling philosophical and other objections to brain-only descriptions
    corecore