82,812 research outputs found

    Tube Convolutional Neural Network (T-CNN) for Action Detection in Videos

    Full text link
    Deep learning has been demonstrated to achieve excellent results for image classification and object detection. However, the impact of deep learning on video analysis (e.g. action detection and recognition) has been limited due to complexity of video data and lack of annotations. Previous convolutional neural networks (CNN) based video action detection approaches usually consist of two major steps: frame-level action proposal detection and association of proposals across frames. Also, these methods employ two-stream CNN framework to handle spatial and temporal feature separately. In this paper, we propose an end-to-end deep network called Tube Convolutional Neural Network (T-CNN) for action detection in videos. The proposed architecture is a unified network that is able to recognize and localize action based on 3D convolution features. A video is first divided into equal length clips and for each clip a set of tube proposals are generated next based on 3D Convolutional Network (ConvNet) features. Finally, the tube proposals of different clips are linked together employing network flow and spatio-temporal action detection is performed using these linked video proposals. Extensive experiments on several video datasets demonstrate the superior performance of T-CNN for classifying and localizing actions in both trimmed and untrimmed videos compared to state-of-the-arts

    Set Aggregation Network as a Trainable Pooling Layer

    Full text link
    Global pooling, such as max- or sum-pooling, is one of the key ingredients in deep neural networks used for processing images, texts, graphs and other types of structured data. Based on the recent DeepSets architecture proposed by Zaheer et al. (NIPS 2017), we introduce a Set Aggregation Network (SAN) as an alternative global pooling layer. In contrast to typical pooling operators, SAN allows to embed a given set of features to a vector representation of arbitrary size. We show that by adjusting the size of embedding, SAN is capable of preserving the whole information from the input. In experiments, we demonstrate that replacing global pooling layer by SAN leads to the improvement of classification accuracy. Moreover, it is less prone to overfitting and can be used as a regularizer.Comment: ICONIP 201
    corecore