387 research outputs found

    Redundancy, Deduction Schemes, and Minimum-Size Bases for Association Rules

    Full text link
    Association rules are among the most widely employed data analysis methods in the field of Data Mining. An association rule is a form of partial implication between two sets of binary variables. In the most common approach, association rules are parameterized by a lower bound on their confidence, which is the empirical conditional probability of their consequent given the antecedent, and/or by some other parameter bounds such as "support" or deviation from independence. We study here notions of redundancy among association rules from a fundamental perspective. We see each transaction in a dataset as an interpretation (or model) in the propositional logic sense, and consider existing notions of redundancy, that is, of logical entailment, among association rules, of the form "any dataset in which this first rule holds must obey also that second rule, therefore the second is redundant". We discuss several existing alternative definitions of redundancy between association rules and provide new characterizations and relationships among them. We show that the main alternatives we discuss correspond actually to just two variants, which differ in the treatment of full-confidence implications. For each of these two notions of redundancy, we provide a sound and complete deduction calculus, and we show how to construct complete bases (that is, axiomatizations) of absolutely minimum size in terms of the number of rules. We explore finally an approach to redundancy with respect to several association rules, and fully characterize its simplest case of two partial premises.Comment: LMCS accepted pape

    Finding Statistically Significant Interactions between Continuous Features

    Full text link
    The search for higher-order feature interactions that are statistically significantly associated with a class variable is of high relevance in fields such as Genetics or Healthcare, but the combinatorial explosion of the candidate space makes this problem extremely challenging in terms of computational efficiency and proper correction for multiple testing. While recent progress has been made regarding this challenge for binary features, we here present the first solution for continuous features. We propose an algorithm which overcomes the combinatorial explosion of the search space of higher-order interactions by deriving a lower bound on the p-value for each interaction, which enables us to massively prune interactions that can never reach significance and to thereby gain more statistical power. In our experiments, our approach efficiently detects all significant interactions in a variety of synthetic and real-world datasets.Comment: 13 pages, 5 figures, 2 tables, accepted to the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019

    RESEARCH ISSUES CONCERNING ALGORITHMS USED FOR OPTIMIZING THE DATA MINING PROCESS

    Get PDF
    In this paper, we depict some of the most widely used data mining algorithms that have an overwhelming utility and influence in the research community. A data mining algorithm can be regarded as a tool that creates a data mining model. After analyzing a set of data, an algorithm searches for specific trends and patterns, then defines the parameters of the mining model based on the results of this analysis. The above defined parameters play a significant role in identifying and extracting actionable patterns and detailed statistics. The most important algorithms within this research refer to topics like clustering, classification, association analysis, statistical learning, link mining. In the following, after a brief description of each algorithm, we analyze its application potential and research issues concerning the optimization of the data mining process. After the presentation of the data mining algorithms, we will depict the most important data mining algorithms included in Microsoft and Oracle software products, useful suggestions and criteria in choosing the most recommended algorithm for solving a mentioned task, advantages offered by these software products.data mining optimization, data mining algorithms, software solutions

    Quantitative Redundancy in Partial Implications

    Get PDF
    We survey the different properties of an intuitive notion of redundancy, as a function of the precise semantics given to the notion of partial implication. The final version of this survey will appear in the Proceedings of the Int. Conf. Formal Concept Analysis, 2015.Comment: Int. Conf. Formal Concept Analysis, 201

    The Bases of Association Rules of High Confidence

    Full text link
    We develop a new approach for distributed computing of the association rules of high confidence in a binary table. It is derived from the D-basis algorithm in K. Adaricheva and J.B. Nation (TCS 2017), which is performed on multiple sub-tables of a table given by removing several rows at a time. The set of rules is then aggregated using the same approach as the D-basis is retrieved from a larger set of implications. This allows to obtain a basis of association rules of high confidence, which can be used for ranking all attributes of the table with respect to a given fixed attribute using the relevance parameter introduced in K. Adaricheva et al. (Proceedings of ICFCA-2015). This paper focuses on the technical implementation of the new algorithm. Some testing results are performed on transaction data and medical data.Comment: Presented at DTMN, Sydney, Australia, July 28, 201

    Combining Clustering techniques and Formal Concept Analysis to characterize Interestingness Measures

    Full text link
    Formal Concept Analysis "FCA" is a data analysis method which enables to discover hidden knowledge existing in data. A kind of hidden knowledge extracted from data is association rules. Different quality measures were reported in the literature to extract only relevant association rules. Given a dataset, the choice of a good quality measure remains a challenging task for a user. Given a quality measures evaluation matrix according to semantic properties, this paper describes how FCA can highlight quality measures with similar behavior in order to help the user during his choice. The aim of this article is the discovery of Interestingness Measures "IM" clusters, able to validate those found due to the hierarchical and partitioning clustering methods "AHC" and "k-means". Then, based on the theoretical study of sixty one interestingness measures according to nineteen properties, proposed in a recent study, "FCA" describes several groups of measures.Comment: 13 pages, 2 figure

    Data Mining Models for Student Databases

    Get PDF
    corecore