12,992 research outputs found

    A new exact algorithm for the multi-depot vehicle routing problem under capacity and route length constraints

    Get PDF
    This article presents an exact algorithm for the multi-depot vehicle routing problem (MDVRP) under capacity and route length constraints. The MDVRP is formulated using a vehicle-flow and a set-partitioning formulation, both of which are exploited at different stages of the algorithm. The lower bound computed with the vehicle-flow formulation is used to eliminate non-promising edges, thus reducing the complexity of the pricing subproblem used to solve the set-partitioning formulation. Several classes of valid inequalities are added to strengthen both formulations, including a new family of valid inequalities used to forbid cycles of an arbitrary length. To validate our approach, we also consider the capacitated vehicle routing problem (CVRP) as a particular case of the MDVRP, and conduct extensive computational experiments on several instances from the literature to show its effectiveness. The computational results show that the proposed algorithm is competitive against stateof-the-art methods for these two classes of vehicle routing problems, and is able to solve to optimality some previously open instances. Moreover, for the instances that cannot be solved by the proposed algorithm, the final lower bounds prove stronger than those obtained by earlier methods

    Dial a Ride from k-forest

    Full text link
    The k-forest problem is a common generalization of both the k-MST and the dense-kk-subgraph problems. Formally, given a metric space on nn vertices VV, with mm demand pairs V×V\subseteq V \times V and a ``target'' kmk\le m, the goal is to find a minimum cost subgraph that connects at least kk demand pairs. In this paper, we give an O(min{n,k})O(\min\{\sqrt{n},\sqrt{k}\})-approximation algorithm for kk-forest, improving on the previous best ratio of O(n2/3logn)O(n^{2/3}\log n) by Segev & Segev. We then apply our algorithm for k-forest to obtain approximation algorithms for several Dial-a-Ride problems. The basic Dial-a-Ride problem is the following: given an nn point metric space with mm objects each with its own source and destination, and a vehicle capable of carrying at most kk objects at any time, find the minimum length tour that uses this vehicle to move each object from its source to destination. We prove that an α\alpha-approximation algorithm for the kk-forest problem implies an O(αlog2n)O(\alpha\cdot\log^2n)-approximation algorithm for Dial-a-Ride. Using our results for kk-forest, we get an O(min{n,k}log2n)O(\min\{\sqrt{n},\sqrt{k}\}\cdot\log^2 n)- approximation algorithm for Dial-a-Ride. The only previous result known for Dial-a-Ride was an O(klogn)O(\sqrt{k}\log n)-approximation by Charikar & Raghavachari; our results give a different proof of a similar approximation guarantee--in fact, when the vehicle capacity kk is large, we give a slight improvement on their results.Comment: Preliminary version in Proc. European Symposium on Algorithms, 200

    Single-Commodity Vehicle Routing Problem with Pickup and Delivery Service

    Get PDF
    We present a novel variation of the vehicle routing problem (VRP). Single commodity cargo with pickup and delivery service is considered. Customers are labeled as either cargo sink or cargo source, depending on their pickup or delivery demand. This problem is called a single commodity vehicle routing problem with pickup and delivery service (1-VRPPD). 1-VRPPD deals with multiple vehicles and is the same as the single-commodity traveling salesman problem (1-PDTSP) when the number of vehicles is equal to 1. Since 1-VRPPD specializes VRP, it is hard in the strong sense. Iterative modified simulated annealing (IMSA) is presented along with greedy random-based initial solution algorithm. IMSA provides a good approximation to the global optimum in a large search space. Experiment is done for the instances with different number of customers and their demands. With respect to average values of IMSA execution times, proposed method is appropriate for practical applications

    Timely Data Delivery in a Realistic Bus Network

    Get PDF
    Abstract—WiFi-enabled buses and stops may form the backbone of a metropolitan delay tolerant network, that exploits nearby communications, temporary storage at stops, and predictable bus mobility to deliver non-real time information. This paper studies the problem of how to route data from its source to its destination in order to maximize the delivery probability by a given deadline. We assume to know the bus schedule, but we take into account that randomness, due to road traffic conditions or passengers boarding and alighting, affects bus mobility. We propose a simple stochastic model for bus arrivals at stops, supported by a study of real-life traces collected in a large urban network. A succinct graph representation of this model allows us to devise an optimal (under our model) single-copy routing algorithm and then extend it to cases where several copies of the same data are permitted. Through an extensive simulation study, we compare the optimal routing algorithm with three other approaches: minimizing the expected traversal time over our graph, minimizing the number of hops a packet can travel, and a recently-proposed heuristic based on bus frequencies. Our optimal algorithm outperforms all of them, but most of the times it essentially reduces to minimizing the expected traversal time. For values of deadlines close to the expected delivery time, the multi-copy extension requires only 10 copies to reach almost the performance of the costly flooding approach. I
    corecore